Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    A Metagenomic Survey of Bacterial Communities From Kurut: the Fermented Cow Milk in Kyrgyzstan
    (Wiley-v C H verlag Gmbh, 2024) Yegin, Zeynep; Mamatova, Zhanylbubu; Yurt, Mediha Nur Zafer; Tasbasi, Behiye Busra; Acar, Elif Esma; Ucak, Samet; Sudagidan, Mert
    Kurut is a traditional dry dairy product mostly consumed in Central Asia. In this study, the distribution of the dominant bacteria present in kurut samples (n=84) originated from seven (Chuy, Issyk-Kul, Talas, Naryn, Jalal-Abad, Osh, and Batken) regions in Kyrgyzstan were analyzed with Illumina iSeq100 platform. The dominant phylum detected was Firmicutes followed by Proteobacteria, Actinobacteria, Cyanobacteria/Chloroplast, and Tenericutes. The most abundant family detected was Lactobacillaceae followed by Streptococcaceae, Enterococcaceae, Chloroplast, and Leuconostocaceae. At the genus level, Lactobacillus was the predominant one in samples and Streptococcus, Enterococcus, Lactococcus, and Streptophyta followed this. Further comprehensive characterization analyses in kurut samples may have potential applications both in industrial starter culture developments and also future therapeutic approaches based on potential strains with probiotic properties. image
  • Article
    Citation - WoS: 17
    Citation - Scopus: 19
    Bacterial Surface, Biofilm and Virulence Properties of listeriamonocytogenes Strains Isolated From Smoked Salmon and Fish Food Contact Surfaces
    (Elsevier, 2021) Sudagidan, Mert; Ozalp, Veli Cengiz; Ozturk, Orhan; Yurt, Mediha Nur Zafer; Yavuz, Orhan; Tasbasi, Behiye Busra; Aydin, Ali
    Biofilm formation is one of the defense mechanisms of bacteria against disinfectants and antimicrobials. The aim of this study was to determine biofilm-forming L.monocytogenes from fish processing and salmon surfaces. Biofilm formation at 15, 25, 37, and 40 degrees C from 1 to 6-days period, adhesion to glass, polypropylene and stainless-steel surfaces, bacterial surface charge and hydrophobicity was determined. Adhesion behavior of the strains was evaluated using Surface Plasmon Resonance (SPR) technique. Totally 32 L.monocytogenes strains belonging to serogroups IIa (n:17), IIc(n:14) and IVb(n:1) were detected from 1320 swabs and 16 smoked salmons. Biofilm formation tests revealed that 21 strains form biofilm on microplate by increasing time and temperature. Although all strains strongly formed biofilm on glass surfaces, two strains slightly adhered polypropylene surfaces. High surface roughness of stainless-steel FeCrNi alloy (Ra = 4.15 nm) and CoCrMo alloy (Ra = 10.75 nm) increased biofilm formation of L.monocytogenes on stainless-steel surfaces. Zeta potential results showed that non-biofilm formers were more negatively charged after 6-days and hydrophobicity couldn't give a distinct distribution among biofilm formers and non-formers. SPR analysis method was evaluated to distinguish biofilm formers to adhere SPR gold chip surfaces. PCR results revealed that all strains were positive for hylA, iap, actA, plcA, plcB, fri, flaA, inlA, inlB, inlC, inlJ, and lmo1386 genes. Additionally, all strains were susceptible to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole. Biofilm-forming, virulence properties of L. monocytogenes strains isolated from fish processing surfaces and smoked salmons were evaluated and SPR was used to differentiate biofilm formers as a sensitive technique for biofilm studies.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 19
    Determination of Bacterial Community Structure of Turkish Kefir Beverages Via Metagenomic Approach
    (Elsevier Sci Ltd, 2022) Yegin, Zeynep; Yurt, Mediha Nur Zafer; Tasbasi, Behiye Busra; Acar, Elif Esma; Altunbas, Osman; Ucak, Samet; Sudagidan, Mert
    Bacterial microbiota of industrially produced kefir beverages (n:33) consumed in Turkey was studied using a culture-independent method and a metagenomic approach. DNA extraction from non pre enriched and pre-enriched kefir samples was used for 16S rRNA amplicon sequencing. Kefirs were dominated by Firmicutes, followed by Actinobacteria and Proteobacteria phyla. The most abundant genera in non pre-enriched kefir beverages were Lactococcus followed by Streptococcus, Bifidobacterium, Lactobacillus, and Leuconostoc. Pre-enriched kefirs were dominated by Streptococcus followed by Lactobacillus, Lactococcus, Bifidobacterium, and Leuconostoc at the genus level. Psychroserpens, Desulfonispora, Pediococcus, Micromonospora, Fructobacillus, Mycobacterium, Acetobacter, Pseudopedobacter, and Clostridium XI genera were found only in pre-enriched kefirs. Kefirs displayed pH differences from 4.04 to 4.49 and the acidity was 0.617e0.987. In two samples, the lowest pH values were obtained with abundance of Lactobacillus helveticus and Streptococcus salivarius. This study broadens our viewpoint and strengthens future applications of kefir beverages in industrial and medical fields. (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 6
    Bacterial and Fungal Microbiota of Mould-Ripened Cheese Produced in Konya
    (Wiley, 2023) Yurt, Mediha Nur Zafer; Omeroglu, Esra Ersoy; Tasbasi, Behiye Busra; Acar, Elif Esma; Altunbas, Osman; Ozalp, Veli Cengiz; Sudagidan, Mert
    Bacterial and fungal diversities of 24 mould-ripened cheeses originating from Konya-Turkiye were examined by metagenomic analysis. Firmicutes phylum, Enterococcus, Clostridium sensu stricto and Lactobacillus (Levilactobacillus) genera were the dominant bacteria. Ascomycota phylum and Penicillium and Pichia genera and Penicillium roqueforti and Pichia membranifaciens species were dominant fungi. Enterococcus faecium (n = 30) and Enterococcus faecalis (n = 6) were identified, and all strains were susceptible to penicillin, ampicillin, vancomycin, teicoplanin, chloramphenicol and linezolid. The highest resistance (n = 14) was against rifampin. Tetracycline resistance was determined in two strains. Biofilm-forming ability was found in nine E. faecium and 1 E. faecalis. E. faecium strains revealed 40-88.9%, and E. faecalis showed 59.2-100% homology by pulsed field gel electrophoresis.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Determination of Bacterial Diversity of Propolis Microbiota
    (Wiley-v C H verlag Gmbh, 2023) Omeroglu, Esra Ersoy; Arserim-Ucar, Dilhun Keriman; Yegin, Zeynep; Caglayan, Nevzat; Yurt, Mediha Nur Zafer; Tasbasi, Behiye Busra; Sudagidan, Mert
    Propolis is a natural resinous mixture produced by the excretions of honeybees. PCR amplification of the 16S rRNA gene region was achieved using DNA of pre-enriched propolis samples collected from Apis mellifera production hives (n=37) in Eastern Turkiye (Bingol and its regions). Next-generation sequencing and metabarcoding techniques were used to identify bacterial communities in propolis samples. Firmicutes dominated the phylum structure, with Proteobacteria, Actinobacteria, Tenericutes, and Spirochaetes following. The top three bacterial families were Bacillaceae, Enterobacteriaceae, and Enterococcaceae. Bacillus (dominantly B. badius and B. thermolactis at the species level) was recognized at the genus level, followed by Enterococcus and Clostridium sensu stricto. Our study comprehensively identified the bacterial diversity of propolis samples. Further investigations targeting to enlighten the microbiota of propolis and its potential application fields are required to gain better insight into ecological, nutritional, and medicinal perspectives.