Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Salinity Gradient Energy Conversion by Custom-Made Interpolymer Ion Exchange Membranes Utilized in Reverse Electrodialysis System
    (Elsevier Sci Ltd, 2023) Altiok, Esra; Kaya, Tugce Zeynep; Smolinska-Kempisty, Katarzyna; Guler, Enver; Kabay, Nalan; Tomaszewska, Barbara; Bryjak, Marek
    Reverse electrodialysis (RED) is one of methods to extract salinity gradient energy between two aqueous solu-tions with different salt concentrations. In this work, custom-made interpolymer ion exchange membranes were employed in the RED stack. The effects of divalent (Mg2+, Ca2+ , SO42-) and monovalent (Li+, K+ and Cl-) ions in the feed solutions prepared from NaCl salt as a function of such process parameters as number of membrane pairs, flow rate , salinity ratio on power generation by the RED method were studied. It was shown that the maximum power density of 0.561 W/m2 was reached by using three membrane pairs using 1:45 of salt ratio with a feed flow rate of 120 mL/min using only NaCl salt in the feed solutions. The maximum power density was 0.398 W/m2 at 120 mL/min of the flow rate of the feed solutions composed of 90 wt% NaCl and 10 wt% KCl by using a salt ratio of 1:30 while the lowest power density of 0.246 W/m2 was obtained with a feed flow rate of 30 mL/min in the presence of SO42-ions with a similar salt ratio. Consequently, it was seen that while the presence of divalent ions in NaCl solutions had negative impact on power generation by RED system, the addition of monovalent ions having smaller hydrated radius than that of the Na+ ions contributed positively to the power generation.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 20
    Investigations on the Effects of Operational Parameters in Reverse Electrodialysis System for Salinity Gradient Power Generation Using Central Composite Design (ccd)
    (Elsevier, 2022) Altiok, Esra; Kaya, Tugce Zeynep; Othman, Nur Hidayati; Kinali, Orhan; Kitada, Soma; Guler, Enver; Kabay, Nalan
    Reverse electrodialysis (RED) can be utilized for the production of renewable energy from salinity gradients. However, there are many key parameters that could influence the performance of RED. This study investigates the use RSM for development of a predictive power density (PD) and open-circuit voltage (OCV) model for the RED system. A three-factor central composite design (CCD) was used to quantify the effects of flow velocity (X-1), salinity ratio (X-2), and number of cell pairs (X-3) towards PD and OCV. A total of 17 experimental data were fitted and ANOVA was used to validate the accuracy of the models. 3D and surface plots were created to foresee the optimal levels of each variable. It was found that flow velocity and salinity ratio have the most dominant influences on the RED performances as compared to number of cell pairs. The predicted PD and OCV values were found to be reasonably fit with the experimental data, validating the predictability of applied models. Therefore, this study suggests that CCD can be considered an effective tool for evaluating and optimizing the RED system using a minimum number of experiments.