Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Citation - WoS: 1
    Operator Splitting of the Kdv-Burgers Type Equation With Fast and Slow Dynamics
    (Amer inst Physics, 2010) Aydin, A.; Karasozen, B.
    The Korteweg de Vries-Burgers (KdV-Burgers) type equation arising from the discretization of the viscous Burgers equation with fast dispersion and slow diffusion is solved using operator splitting. The dispersive and diffusive parts are discretized in space by second order conservative finite differences. The resulting system of ordinary differential equations are composed using the time reversible Strang splitting. The numerical results reveal that the periodicity of the solutions and the invariants of the KdV-Burgers equation are well preserved.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 16
    Multisymplectic Box Schemes for the Complex Modified Korteweg-De Vries Equation
    (Amer inst Physics, 2010) Aydin, A.; Karasozen, B.
    In this paper, two multisymplectic integrators, an eight-point Preissman box scheme and a narrow box scheme, are considered for numerical integration of the complex modified Korteweg-de Vries equation. Energy and momentum preservation of both schemes and their dispersive properties are investigated. The performance of both methods is demonstrated through numerical tests on several solitary wave solutions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456068]