6 results
Search Results
Now showing 1 - 6 of 6
Article Citation - WoS: 13Citation - Scopus: 15A Novel Data Encryption Method Using an Interlaced Chaotic Transform(Pergamon-elsevier Science Ltd, 2024) Gokcay, Erhan; Tora, HakanWe present a novel data encryption approach that utilizes a cascaded chaotic map application. The chaotic map used in both permutation and diffusion is Arnold's Cat Map (ACM), where the transformation is periodic and the encrypted data can be recovered. The original format of ACM is a two-dimensional mapping, and therefore it is suitable to randomize the pixel locations in an image. Since the values of pixels stay intact during the transformation, the process cannot encrypt an image, and known-text attacks can be used to get back the transformation matrix. The proposed approach uses ACM to shuffle the positions and values of two-dimensional data in an interlaced and nested process. This combination extends the period of the transformation, which is significantly longer than the period of the initial transformation. Furthermore, the nested process's possible combinations vastly expand the key space. At the same time, the interlaced pixel and value transformation makes the encryption highly resistant to any known-text attacks. The encrypted data passes all random-data tests proposed by the National Institute of Standards and Technology. Any type of data, including ASCII text, can be encrypted so long as it can be rearranged into a two-dimensional format.Article Citation - WoS: 3Citation - Scopus: 3An Information-Theoretic Instance-Based Classifier(Elsevier Science inc, 2020) Gokcay, ErhanClassification algorithms are used in many areas to determine new class labels given a training set. Many classification algorithms, linear or not, require a training phase to determine model parameters by using an iterative optimization of the cost function for that particular model or algorithm. The training phase can adjust and fine-tune the boundary line between classes. However, the process may get stuck in a local optimum, which may or may not be close to the desired solution. Another disadvantage of training processes is that upon arrival of a new sample, a retraining of the model is necessary. This work presents a new information-theoretic approach to an instance-based supervised classification. The boundary line between classes is calculated only by the data points without any external parameters or weights, and it is given in closed-form. The separation between classes is nonlinear and smooth, which reduces memorization problems. Since the method does not require a training phase, classified samples can be incorporated in the training set directly, simplifying a streaming classification operation. The boundary line can be replaced with an approximation or regression model for parametric calculations. Features and performance of the proposed method are discussed and compared with similar algorithms. (C) 2020 Elsevier Inc. All rights reserved.Article Citation - WoS: 13Citation - Scopus: 19A Generalized Arnold's Cat Map Transformation for Image Scrambling(Springer, 2022) Tora, Hakan; Gokcay, Erhan; Turan, Mehmet; Buker, MohamedThis study presents a new approach to generate the transformation matrix for Arnold's Cat Map (ACM). Matrices of standard and modified ACM are well known by many users. Since the structure of the possible matrices is known, one can easily select one of them and use it to recover the image with several trials. However, the proposed method generates a larger set of transform matrices. Thus, one will have difficulty in estimating the transform matrix used for scrambling. There is no fixed structure for our matrix as in standard or modified ACM, making it much harder for the transform matrix to be discovered. It is possible to use different type, order and number of operations to generate the transform matrix. The quality of the shuffling process and the strength against brute-force attacks of the proposed method is tested on several benchmark images.Conference Object An Iot Application for Locating Victims Aftermath of an Earthquake(Ieee, 2017) Karakaya, Murat; Sengul, Gokhan; Gokcay, ErhanThis paper presents an Internet of Things (IoT) framework which is specially designed for assisting the research and rescue operations targeted to collapsed buildings aftermath of an earthquake. In general, an IoT network is used to collect and process data from different sources called things. According to the collected data, an IoT system can actuate different mechanisms to react the environment. In the problem at hand, we exploit the IoT capabilities to collect the data about the victims before the building collapses and when it falls down the collected data is processed to generate useful reports which will direct the search and rescue efforts. The proposed framework is tested by a pilot implementation with some simplifications. The initial results and experiences are promising. During the pilot implementation, we observed some issues which are addressed in the proposed IoT framework properly.Article Entropy Based Streaming Big-Data Reduction With Adjustable Compression Ratio(Springer, 2023) Gokcay, ErhanThe Internet of Things is a novel concept in which numerous physical devices are linked to the internet to collect, generate, and distribute data for processing. Data storage and processing become more challenging as the number of devices increases. One solution to the problem is to reduce the amount of stored data in such a way that processing accuracy does not suffer significantly. The reduction can be lossy or lossless, depending on the type of data. The article presents a novel lossy algorithm for reducing the amount of data stored in the system. The reduction process aims to reduce the volume of data while maintaining classification accuracy and properly adjusting the reduction ratio. A nonlinear cluster distance measure is used to create subgroups so that samples can be assigned to the correct clusters even though the cluster shape is nonlinear. Each sample is assumed to arrive one at a time during the reduction. As a result of this approach, the algorithm is suitable for streaming data. The user can adjust the degree of reduction, and the reduction algorithm strives to minimize classification error. The algorithm is not dependent on any particular classification technique. Subclusters are formed and readjusted after each sample during the calculation. To summarize the data from the subclusters, representative points are calculated. The data summary that is created can be saved and used for future processing. The accuracy difference between regular and reduced datasets is used to measure the effectiveness of the proposed method. Different classifiers are used to measure the accuracy difference. The results show that the nonlinear information-theoretic cluster distance measure improves the reduction rates with higher accuracy values compared to existing studies. At the same time, the reduction rate can be adjusted as desired, which is a lacking feature in the current methods. The characteristics are discussed, and the results are compared to previously published algorithms.Conference Object Effect of Secret Image Transformation on the Steganography Process(Ieee, 2017) Buker, Mohamed; Tora, Hakan; Gokcay, ErhanSteganography is the art of hiding information in something else. It is favorable over encryption because encryption only hides the meaning of the information; whereas steganography hides the existence of the information. The existence of a hidden image decreases Peak Signal to Noise Ratio (PSNR) and increases Mean Square Error (MSE) values of the stego image. We propose an approach to improve PSNR and MSE values in stego images. In this method a transformation is applied to the secret image, concealed within another image, before embedding into the cover image. The effect of the transformation is tested with Least Significant Bit (LSB) insertion and Discrete Cosine Transformation (DCT) techniques. MSE and PSNR are calculated for both techniques with and without transformation. Results show a better MSE and PSNR values when a transformation is applied for LSB technique but no significant difference was shown in DCT technique.

