Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 4
    An Introduction To Complex Functions on Products of Two Time Scales
    (Taylor & Francis Ltd, 2006) Bohner, Martin; Guseinov, Gusein SH.
    In this paper, we study the concept of analyticity for complex-valued functions of a complex time scale variable, derive a time scale counter-part of the classical Cauchy-Riemann equations, introduce complex line delta and nabla integrals along time scales curves, and obtain a time scale version of the classical Cauchy integral theorem.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 12
    Further Properties of the Laplace Transform on Time Scales With Arbitrary Graininess
    (Taylor & Francis Ltd, 2013) Bohner, Martin; Guseinov, Gusein Sh; Karpuz, Basak
    In this work, we generalize several properties of the usual Laplace transform to the Laplace transform on arbitrary time scales. Among them are translation theorems, transforms of periodic functions, integration of transforms, transforms of derivatives and integrals, and asymptotic values.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 39
    Properties of the Laplace transform on time scales with arbitrary graininess
    (Taylor & Francis Ltd, 2011) Bohner, Martin; Guseinov, Gusein Sh.; Karpuz, Basak
    We generalize several standard properties of the usual Laplace transform to the Laplace transform on arbitrary time scales. Some of these properties were justified earlier under certain restrictions on the graininess of the time scale. In this work, we have no restrictions on the graininess.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 8
    Surface Areas and Surface Integrals on Time Scales
    (Dynamic Publishers, inc, 2010) Bohner, Martin; Guseinov, Gusein Sh; Mathematics
    We study surfaces parametrized by time scale parameters, obtain an integral fomula for computing the area of time scale surfaces, introduce delta integrals over time scale surfaces, and give sufficient conditions that ensure existence of these integrals