Pubmed
Permanent URI for this collectionhttps://ada.atilim.edu.tr/handle/123456789/22
Browse
Browsing Pubmed by WoS Q "Q1"
Now showing 1 - 20 of 127
- Results Per Page
- Sort Options
Article Citation - WoS: 97Citation - Scopus: 107A 1.6-Mm, Metal Tube Ultrasonic Motor(Ieee-inst Electrical Electronics Engineers inc, 2003) Cagatay, S; Koc, B; Uchino, KA miniaturized metal tube ultrasonic motor, the dimensions of which are 1.6 mm in diameter and 6 rum in length, was developed. Two flattened surfaces with 90-degrees were ground on the outer surface of the stator. Two PZT-based piezoelectric ceramics were bonded onto these flat surfaces. The asymmetrical surface of the stator developed the split of the two degenerated orthogonal bending modes, resulting in a wobble motion. The working frequency of the 1.6-mm motor with 6 mm in length was 130 kHz. A torque of 0.5 mNm was reached at a maximum power of 45 mW with a speed of 45 rad/sec. The maximum efficiency was 16%.Article Citation - WoS: 1Citation - Scopus: 12-Ag and Bone Marrow-Targeted Pcl Nanoparticles as Nanoplatforms for Hematopoietic Cell Line Mobilization(Bmc, 2024) Kose, Sevil; Varan, Cem; Onen, Selin; Nemutlu, Emirhan; Bilensoy, Erem; Korkusuz, PetekBackgroundThe use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated.MethodsPCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay.ResultsThe 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 mu M 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 mu M 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 mu M dose and 8 h time window via a specific CBR agonism.ConclusionThe newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.Review Citation - WoS: 10Citation - Scopus: 83d Bioprinting Tissue Analogs: Current Development and Translational Implications(Sage Publications inc, 2023) Liu, Suihong; Cheng, Lijia; Liu, Yakui; Zhang, Haiguang; Song, Yongteng; Park, Jeong-Hui; Ramalingam, MuruganThree-dimensional (3D) bioprinting is a promising and rapidly evolving technology in the field of additive manufacturing. It enables the fabrication of living cellular constructs with complex architectures that are suitable for various biomedical applications, such as tissue engineering, disease modeling, drug screening, and precision regenerative medicine. The ultimate goal of bioprinting is to produce stable, anatomically-shaped, human-scale functional organs or tissue substitutes that can be implanted. Although various bioprinting techniques have emerged to develop customized tissue-engineering substitutes over the past decade, several challenges remain in fabricating volumetric tissue constructs with complex shapes and sizes and translating the printed products into clinical practice. Thus, it is crucial to develop a successful strategy for translating research outputs into clinical practice to address the current organ and tissue crises and improve patients' quality of life. This review article discusses the challenges of the existing bioprinting processes in preparing clinically relevant tissue substitutes. It further reviews various strategies and technical feasibility to overcome the challenges that limit the fabrication of volumetric biological constructs and their translational implications. Additionally, the article highlights exciting technological advances in the 3D bioprinting of anatomically shaped tissue substitutes and suggests future research and development directions. This review aims to provide readers with insight into the state-of-the-art 3D bioprinting techniques as powerful tools in engineering functional tissues and organs.Article Citation - WoS: 55Citation - Scopus: 64Accuracy Assessment of Temperature Trends From Era5 and Era5-Land(Elsevier, 2023) Yilmaz, Meric; Civil EngineeringMany environmental processes and ecological systems are being affected by the warming temperatures as a result of climate change. To correctly identify and attribute the uncertainty estimates in these systems, an investigation of tem-perature trend signal existing in the datasets that are used to study such systems is necessary. In this study, the trend of widely used ERA5 and ERA5-Land temperature estimates between 1951 and 2020 were validated using temperature trends from ground station-based observations in Turkey. The investigation included datasets obtained over 540 stations, and the seasonality and spatio-temporal variability of the trend accuracy was also investigated. On average, the trends of observations over all stations were 0.82 degrees C/decade and 0.30 degrees C/decade for the periods 2001-2020 and 1951-2020, respectively, indicating strong evidence of climate change. When the model datasets used spatially and temporally continuous datasets, the trends identified were 0.91 degrees C/decade and 0.21 degrees C/decade over the entire Turkey for the years 2001-2020 and 1951-2020, respectively. The difference in the 70-year trends of the two esti-mates was attributed to the missing datasets in observations. The differences between the trends of model estimates and observations were higher for the first decade than for the last two decades, stressing the impact of improved model estimates over time. All products showed heavy seasonality, suggesting that winter trends (1.3 degrees C/decade on average) are much higher than the summer (0.3 degrees C/decade) between 2001 and 2020. The results indicated a high degree of consistency between the trends of ERA5/ERA5-Land and observations, implying they may be used as a replacement to observations.Article Citation - WoS: 23Citation - Scopus: 25Acpa Decreases Non-Small Cell Lung Cancer Line Growth Through Akt/Pi3k and Jnk Pathways in Vitro(Springernature, 2021) Boyacioglu, OEzge; Bilgic, Elif; Varan, Cem; Bilensoy, Erem; Nemutlu, Emirhan; Sevim, Duygu; Korkusuz, Petek; Basic SciencesTherapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39x10(-12)M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.Article Citation - WoS: 4Citation - Scopus: 3Adaptation of Food Craving Inventory To Turkish Culture: a Validity and Reliability Study(Bmc, 2022) Ozel, Irem Cagla; Yabanci Ayhan, Nurcan; Cetiner, Ozlem; Nutrition and DieteticsPlain English Summary This study was carried out to adapt the Food Craving Inventory to Turkish. The English version of inventory consists of 4 sub-factors that measure cravings for high-fat foods, carbohydrates/starches, sweets, and fast food fats, and creates a total score. The sample of the study consists of 621 individuals between the ages of 19-50 who voluntarily agree to participate in an online survey. This study revealed that FCI-TR is a valid instrument of specific food cravings in the Turkish adult population. Turkish version of the FCI also consist of 4 sub-factors. Women experienced more food craving for sweets than men. While the most craved food by women was chocolate, men scored significantly higher on bread than women. In addition, a relationship was found between food craving and body weight. Introduction The Food Craving Inventory is a 28-item self-report measure of specific food cravings. The inventory consists of 4 factors: high fats, sweets, carbohydrates/starches and fast-food fats. Purpose This study was carried out to evaluate the Turkish validity and reliability of the Food Craving Inventory, and to determine the psychometric properties and factor structure of the Turkish version. Methods The sample of the study consists of 621 individuals between the ages of 19-50 who voluntarily agree to participate in online survey. Validity and reliability analyses were performed for the Turkish version of Food Craving Inventory (FCI-TR). Confirmatory factor analysis was performed to evaluate the factor structure of the Turkish version of FCI. Results Confirmatory factor analysis yielded a four-factor structure as "sweets," "high-fats," "carbohydrates/starches" and "fast food fats". The Cronbach-alpha coefficient for the total score was 0.84; subfactors were calculated as 0.74 for "sweets", 0.64 for "high-fat foods", 0.65 for "carbohydrates/starches", and 0.66 for "fast-food fats". The scores of the FCI-TR factors and its total score significantly correlated with the sub-factors of Three Factor Eating Questionnaire (TFEQ). A significant correlation was found between body mass index (BMI) and high fats and fast-food fats factor score. Also total and factor scores of the FCI-TR were different between BMI groups. Conclusions This study demonstrates that the Turkish version of the FCI is a valid and reliable tool to measure food cravings in the Turkish population. FCI is also correlated with sub-factors of TFEQ.Article Citation - WoS: 50Citation - Scopus: 64Analysis of Bakery Products by Laser-Induced Breakdown Spectroscopy(Elsevier Sci Ltd, 2015) Bilge, Gonca; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Tamer, Ugur; Cakir, Serhat; Department of Electrical & Electronics EngineeringIn this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R-2) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. (C) 2015 Elsevier Ltd. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 3Angiogenic Inhibition Therapy, a Sliding Mode Control Adventure(Elsevier Ireland Ltd, 2020) Doruk, Resat Ozgur; Electrical-Electronics Engineering[No Abstract Available]Article Citation - WoS: 1Citation - Scopus: 0Antioxidant Activity of micractinium Sp. (chlorophyta) Extracts Against H2o2< Induced Oxidative Stress in Human Breast Adenocarcinoma Cells(Nature Portfolio, 2024) Bulut, Onur; Kose, Iskin Engin; Sonmez, Cagla; Oktem, Huseyin AvniIn response to the growing demand for high-value bioactive compounds, microalgae cultivation has gained a significant acceleration in recent years. Among these compounds, antioxidants have emerged as essential constituents in the food, pharmaceutical, and cosmetics industries. This study focuses on Micractinium sp. ME05, a green microalgal strain previously isolated from hot springs flora in our laboratory. Micractinium sp. cells were extracted using six different solvents, and their antioxidant capacity, as well as total phenolic, flavonoid, and carotenoid contents were evaluated. The methanolic extracts demonstrated the highest antioxidant capacity, measuring 7.72 and 93.80 mu mol trolox equivalents g-1 dry weight (DW) according to the DPPH and FRAP assays, respectively. To further characterize the biochemical profile, reverse phase high-performance chromatography (RP-HPLC) was employed to quantify twelve different phenolics, including rutin, gallic acid, benzoic acid, cinnamic acid, and beta-carotene, in the microalgal extracts. Notably, the acetone extracts of Micractinium sp. grown mixotrophically contained a high amount of gallic acid (469.21 +/- 159.74 mu g g-1 DW), while 4-hydroxy benzoic acid (403.93 +/- 20.98 mu g g-1 DW) was the main phenolic compound in the methanolic extracts under heterotrophic cultivation. Moreover, extracts from Micractinium sp. exhibited remarkable cytoprotective activity by effectively inhibiting hydrogen peroxide-induced oxidative stress and cell death in human breast adenocarcinoma (MCF-7) cells. In conclusion, with its diverse biochemical composition and adaptability to different growth regimens, Micractinium sp. emerges as a robust candidate for mass cultivation in nutraceutical and food applications.Review Citation - WoS: 33Citation - Scopus: 34Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: a Review(Dove Medical Press Ltd, 2020) Rabiee, Navid; Ahmadi, Sepideh; Arab, Zeynab; Bagherzadeh, Mojtaba; Safarkhani, Moein; Nasseri, Behzad; Tayebi, LobatWith the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.Article Citation - WoS: 31Citation - Scopus: 37The Association of Missed Nursing Care and Determinants of Satisfaction With Current Position for Direct-Care Nurses-An International Study(Wiley, 2020) Bragadottir, Helga; Burmeister, Elizabeth A.; Terzioglu, Fusun; Kalisch, Beatrice J.; NursingAim To describe the association of missed nursing care and to identify the determinants of satisfaction with current position for direct-care nurses. Background Missed nursing care and job satisfaction are important issues regarding quality patient care and safety in health care, globally. Method This was a cross-sectional quantitative study usingMISSCARE Surveydata. Participants were 7,079 nursing staff providing direct patient care in hospitals in Australia, Iceland, Turkey and the USA. Multivariable nested models were used to identify the relationship between missed nursing care and nurses' satisfaction with current position. Results More missed nursing care was associated with less satisfaction with current position. Other determinants of job satisfaction included country, nursing experience, overtime worked, adequacy of staffing and the number of shifts missed during the previous 3 months. Conclusion(s) Internationally, more missed nursing care is associated with less nursing job satisfaction and is influenced by work experience, overtime worked, levels of staffing and absenteeism. Implications for Nursing Management This study identifies that the association between missed nursing care and satisfaction with nursing position is of global concern. Other factors requiring the attention of nurse managers are staffing levels, absenteeism and work experience.Article Citation - WoS: 0Automatic Control of Hypothalamus-Pituitary Axis Dynamics(Elsevier Ireland Ltd, 2019) Doruk, R. Ozgur; Mohsin, Ahmed H.; Electrical-Electronics EngineeringBackground and Objective: In this study, a presentation is made for the automatic control of the hypothalamus-pituitary-adrenal axis which plays an important role in the immune stress responses and the circadian rhythms of mammalian organisms. Methods: Control approaches are implemented on a novel second order nonlinear system which accepts adrenocorticotropin hormone as an input and models the variation of plasma concentrations of adrenocorticotropin and cortisol respectively. The control methods are based on back-stepping and input-output feedback linearization techniques. The controllers adjust the adrenocorticotropin injection to maintain the daily rhythm of the cortisol concentration. In accordance with the periodicity of biological clock mechanism, we provide a sinusoidally varying cortisol reference to the controllers. Results: Numerical simulations are performed (on MATLAB) to demonstrate the closed loop performance of the controllers. Major concerns in the selection of the control gains are chattering and negative concentration in responses. The simulation results showed that one can successfully find gain levels which do not lead to those issues. However, the gains lie in different ranges for back-stepping and feedback linearization based controllers. Conclusion: The results showed that, both back-stepping and feedback linearization based controllers fulfilled their duty of synchronization of the cortisol concentration to a reference daily periodic rhythm. In addition to that, the risk of negative valued adrenocorticotropin injection can be eliminated by properly choosing the controller gains. (C) 2019 Elsevier B.V. All rights reserved.Article Citation - WoS: 6Citation - Scopus: 6Bacterial Skin Microbiota of Seabass From Aegean Fish Farms and Antibiotic Susceptibility of Psychrotrophic pseudomonas(Mdpi, 2023) Aydin, Ali; Sudagidan, Mert; Mamatova, Zhanylbubu; Yurt, Mediha Nur Zafer; Ozalp, Veli Cengiz; Zornu, Jacob; Brun, Edgar; Basic SciencesFarming seabass (Dicentrarchus labrax) is an essential activity in the Mediterranean basin including the Aegean Sea. The main seabass producer is Turkey accounting for 155,151 tons of production in 2021. In this study, skin swabs of seabass farmed in the Aegean Sea were analysed with regard to the isolation and identification of Pseudomonas. Bacterial microbiota of skin samples (n = 96) from 12 fish farms were investigated using next-generation sequencing (NGS) and metabarcoding analysis. The results demonstrated that Proteobacteria was the dominant bacterial phylum in all samples. At the species level, Pseudomonas lundensis was identified in all samples. Pseudomonas, Shewanella, and Flavobacterium were identified using conventional methods and a total of 46 viable (48% of all NGS+) Pseudomonas were isolated in seabass swab samples. Additionally, antibiotic susceptibility was determined according to standards of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) in psychrotrophic Pseudomonas. Pseudomonas strains were tested for susceptibility to 11 antibiotics (piperacillin-tazobactam, gentamicin, tobramycin, amikacin, doripenem, meropenem, imipenem, levofloxacin, ciprofloxacin, norfloxacin, and tetracycline) from five different groups of antibiotics (penicillins, aminoglycosides, carbapenems, fluoroquinolones, and tetracyclines). The antibiotics chosen were not specifically linked to usage by the aquaculture industry. According to the EUCAST and CLSI, three and two Pseudomonas strains were found to be resistant to doripenem and imipenem (E-test), respectively. All strains were susceptible to piperacillin-tazobactam, amikacin, levofloxacin, and tetracycline. Our data provide insight into different bacteria that are prevalent in the skin microbiota of seabass sampled from the Aegean Sea in Turkey, and into the antibiotic resistance of psychrotrophic Pseudomonas spp.Article Citation - WoS: 43Citation - Scopus: 46Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation(Amer Chemical Soc, 2018) Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F. Begum; Topal, Ahmet E.; Urel, Mustafa; Guler, Mustafa O.; Department of Electrical & Electronics EngineeringPeripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.Article Citation - Scopus: 41Bioengineered Bacterial Membrane Vesicles With Multifunctional Nanoparticles as a Versatile Platform for Cancer Immunotherapy(American Chemical Society, 2023) Liu,X.Z.; Wen,Z.J.; Li,Y.M.; Sun,W.R.; Hu,X.Q.; Zhu,J.Z.; Wang,R.Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence. © 2023 American Chemical Society.Review Citation - WoS: 16Citation - Scopus: 18Bioprinting and biomaterials for dental alveolar tissue regeneration(Frontiers Media Sa, 2023) Ostrovidov, Serge; Ramalingam, Murugan; Bae, Hojae; Orive, Gorka; Fujie, Toshinori; Shi, Xuetao; Kaji, HirokazuThree dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.Article Citation - WoS: 1Citation - Scopus: 2Calcium Carbonate/Polydopamine Composite Nanoplatform Based on Tgf-Β Blockade for Comfortable Cancer Immunotherapy(Amer Chemical Soc, 2024) Li, Yunmeng; Wang, Deqiang; Sun, Jian; Hao, Zhaokun; Tang, Letian; Sun, Wanru; Wang, RanranCancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-beta) and inflammatory factor (IL-6, IL-1 beta, and TNF-alpha) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-beta leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.Article Citation - WoS: 2Citation - Scopus: 2Clinic-Oriented Injectable Smart Material for the Treatment of Diabetic Wounds: Coordinating the Release of Gm-Csf and Vegf(Elsevier, 2024) Kinali, Hurmet; Kalaycioglu, Gokce Dicle; Boyacioglu, Ozge; Korkusuz, Petek; Aydogan, Nihal; Vargel, Ibrahim; Basic SciencesChronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles. GM-CSF promotes inflammation, while VEGF facilitates angiogenesis. The hybrid particles (200 -1000 nm) designed within the scope of the study can encapsulate the model proteins Bovine Serum Albumin 65 +/- 5 % and Lysozyme 77 +/- 10 % and can release stably for 21 days. In vivo tests and histological findings revealed that in the hydrogels containing GM-CSF/VEGF-loaded hybrid particles, wound depth decreased, inflammation phase increased, and fibrotic scar tissue decreased, while mature granulation tissue was formed on day 10. These findings confirm that the hybrid particles first initiate the inflammation phase by delivering GM-CSF, followed by VEGF, increasing the number of vascularization and thus increasing the healing rate of wounds. We emphasize the importance of multi-component and sequential release in wound healing and propose a unifying therapeutic strategy to sequentially deliver ligands targeting wound healing stages, which is very important in the treatment of the diabetic wounds.Editorial Citation - WoS: 1Citation - Scopus: 1Commentary on "spectral Characterization of the Binding and Conformational Changes of Serum Albumins Upon Interaction With an Anticancer Drug, Anastrozole"(Pergamon-elsevier Science Ltd, 2015) Korkmaz, Filiz; Physics GroupThe manuscript by R. Punith and J. Seetharamappa (http://dx.doi.org/10.1016/j.saa.201202.038) presents the interaction between serum albumin from human (HAS) and from bovine (BSA) with a drug called Anastrozole (AZ). The drug is on the market for treating patients with breast cancer after surgery and for metastasis in women. The study utilizes various spectroscopic techniques such as; fluorescence, synchronous fluorescence, 3D fluorescence measurements, FTIR, CD and UV. Although there are some relatively minor comments on the paper, the main point that needs to be reviewed by the authors is the result of FTIR measurements. Based on the data provided in the text (there is no figure), the protein sample is not in its native state, which makes the data inconvenient to be used in drawing conclusions. Authors are kindly requested to take another look at the FUR experiments. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 32Citation - Scopus: 47Common Fixed Point Results on an Extended B-Metric Space(Springeropen, 2018) Alqahtani, Badr; Fulga, Andreea; Karapinar, Erdal; MathematicsIn this paper, we investigate the existence of common fixed points of a certain mapping in the frame of an extended b-metric space. The given results cover a number of well-known fixed point theorems in the literature. We state some examples to illustrate our results.