Acpa Decreases Non-Small Cell Lung Cancer Line Growth Through Akt/Pi3k and Jnk Pathways in Vitro
Loading...

Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Springernature
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39x10(-12)M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.
Description
KOCAEFE, CETIN/0000-0003-3216-9399; Varan, Cem/0000-0002-9391-8691; KARAKOC, ELIF/0000-0002-0677-1047; Boyacioglu, Ozge/0000-0001-5240-8209; Sevim, Duygu/0000-0003-0001-0113; KORKUSUZ, PETEK/0000-0002-7553-3915
Keywords
[No Keyword Available], Lung Neoplasms, QH573-671, MAP Kinase Signaling System, Apoptosis, Article, Phosphatidylinositol 3-Kinases, Carcinoma, Non-Small-Cell Lung, Humans, Cytology, Proto-Oncogene Proteins c-akt, Cell Proliferation
Fields of Science
0301 basic medicine, 0303 health sciences, 03 medical and health sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
22
Source
Cell Death & Disease
Volume
12
Issue
1
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 15
Scopus : 30
PubMed : 15
Captures
Mendeley Readers : 33
SCOPUS™ Citations
30
checked on Feb 11, 2026
Web of Science™ Citations
28
checked on Feb 11, 2026
Page Views
7
checked on Feb 11, 2026
Google Scholar™

OpenAlex FWCI
4.59870428
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING


