2-Ag and Bone Marrow-Targeted Pcl Nanoparticles as Nanoplatforms for Hematopoietic Cell Line Mobilization
No Thumbnail Available
Date
2024
Authors
Kose, Sevil
Varan, Cem
Onen, Selin
Nemutlu, Emirhan
Bilensoy, Erem
Korkusuz, Petek
Journal Title
Journal ISSN
Volume Title
Publisher
Bmc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
BackgroundThe use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated.MethodsPCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay.ResultsThe 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 mu M 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 mu M 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 mu M dose and 8 h time window via a specific CBR agonism.ConclusionThe newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.
Description
Kose, Sevil/0000-0003-2188-9534
ORCID
Keywords
Cannabinoid, Endocannabinoid, Hematopoietic stem cell, Transplantation, Bone marrow, Mobilization, Nanoparticle delivery system
Turkish CoHE Thesis Center URL
Fields of Science
Citation
1
WoS Q
Q1
Scopus Q
Q1
Source
Volume
15
Issue
1