Automatic control of Hypothalamus-Pituitary-Adrenal axis dynamics

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ireland Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

Background and Objective: In this study, a presentation is made for the automatic control of the hypothalamus-pituitary-adrenal axis which plays an important role in the immune stress responses and the circadian rhythms of mammalian organisms. Methods: Control approaches are implemented on a novel second order nonlinear system which accepts adrenocorticotropin hormone as an input and models the variation of plasma concentrations of adrenocorticotropin and cortisol respectively. The control methods are based on back-stepping and input-output feedback linearization techniques. The controllers adjust the adrenocorticotropin injection to maintain the daily rhythm of the cortisol concentration. In accordance with the periodicity of biological clock mechanism, we provide a sinusoidally varying cortisol reference to the controllers. Results: Numerical simulations are performed (on MATLAB) to demonstrate the closed loop performance of the controllers. Major concerns in the selection of the control gains are chattering and negative concentration in responses. The simulation results showed that one can successfully find gain levels which do not lead to those issues. However, the gains lie in different ranges for back-stepping and feedback linearization based controllers. Conclusion: The results showed that, both back-stepping and feedback linearization based controllers fulfilled their duty of synchronization of the cortisol concentration to a reference daily periodic rhythm. In addition to that, the risk of negative valued adrenocorticotropin injection can be eliminated by properly choosing the controller gains. (C) 2019 Elsevier B.V. All rights reserved.

Description

Keywords

HPA Axis, Circadian rhythm, Homeostasis, Back-stepping control, Feedback linearization control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Source

Volume

178

Issue

Start Page

59

End Page

75

Collections