WoS
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14411/18
Browse
Browsing WoS by Publisher "Amer Chemical Soc"
Now showing 1 - 20 of 31
- Results Per Page
- Sort Options
Conference Object Acid/ Base Doped/ Dedoped Low Band Gap Polymer(Amer Chemical Soc, 2016) Karabay, Baris; Gokce, Gurcan; Cihaner, Atilla; Icli Ozkut, Merve[No Abstract Available]Conference Object Antibacterial Activity of Cubic Boron Nitride (cbn) Coatings on Stainless Steel Grade 316 (316l)(Amer Chemical Soc, 2010) Uzunoglu, Emel; Sengonul, Merih; Derici, Kursat; Biriken, Derya; Kaftanoglu, Bilgin; Sengonul, Merih[No Abstract Available]Article Citation - WoS: 47Citation - Scopus: 52Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation(Amer Chemical Soc, 2018) Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F. Begum; Topal, Ahmet E.; Urel, Mustafa; Guler, Mustafa O.Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.Article Citation - WoS: 4Citation - Scopus: 7Calcium Carbonate/Polydopamine Composite Nanoplatform Based on Tgf-Β Blockade for Comfortable Cancer Immunotherapy(Amer Chemical Soc, 2024) Li, Yunmeng; Wang, Deqiang; Sun, Jian; Hao, Zhaokun; Tang, Letian; Sun, Wanru; Wang, RanranCancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-beta) and inflammatory factor (IL-6, IL-1 beta, and TNF-alpha) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-beta leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.Article Citation - WoS: 10Citation - Scopus: 11Capture of Carbonyl Sulfide by Organic Liquid Mixtures: a Systematic Dft Investigation(Amer Chemical Soc, 2021) Abduesslam, Mahmoud; Kayi, HakanPotential use of organic liquid mixtures consisting of amines, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG), and linear alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol) in the capture of carbonyl sulfide is comprehensively and systematically investigated by density functional theory calculations at the omega B97X-D3/6-311+ +G(d,p) level of theory. In total, eighteen different systems as a combination of amines and alcohols are taken into account. A modified single-step, termolecular reaction mechanism among amine, alcohol, and carbonyl sulfide is considered. The findings from structural, thermodynamic, and kinetic analyses indicated that suggested reaction mechanisms for the eighteen different systems being studied are thermodynamically feasible, and the organic liquid mixture of BTMG with methanol yields the lowest energy barrier and the highest reaction rate constant in the capture of carbonyl sulfide.Article Citation - WoS: 22Citation - Scopus: 23Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@ir Core-Shell Nanoparticles(Amer Chemical Soc, 2020) Yurderi, Mehmet; Top, Tuba; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, MehmetHydrazine borane (HB; N2H4BH3) has been considered to be one of the most promising solid chemical hydrogen storage materials owing to its high hydrogen capacity and stability under ambient conditions. Despite that, the high purity of hydrogen production from the complete dehydrogenation of HB stands as a major problem that needs to be solved for the convenient use of HB in on-demand hydrogen production systems. In this study, we describe the development of a new catalytic material comprised of bimetallic Ni@Ir core-shell nanoparticles (NPs) supported on OMS-2-type manganese oxide octahedral molecular sieve nanorods (Ni@Ir/OMS-2), which can reproducibly be prepared by following a synthesis protocol including (i) the oleylamine-mediated preparation of colloidal Ni@Ir NPs and (ii) wet impregnation of these ex situ synthesized Ni@Ir NPs onto the OMS-2 surface. The characterization of Ni@Ir/OMS-2 has been done by using various spectroscopic and visualization techniques, and their results have revealed the formation of well-dispersed Ni@Ir core-shell NPs on the surface of OMS-2. The catalytic employment of Ni@Ir/OMS-2 in the dehydrogenation of HB showed that Ni-0.22@Ir-0.78/OMS-2 exhibited high dehydrogenation selectivity (>99%) at complete conversion with a turnover frequency (TOF) value of 2590 h(-1) at 323 K, which is the highest activity value among all reported catalysts for the complete dehydrogenation of HB. Furthermore, the Ni-0.22@Ir-0.78/OMS-2 catalyst enables facile recovery and high stability against agglomeration and leaching, which make it a reusable catalyst in the complete dehydrogenation of HB. The studies reported herein also include the collection of wealthy kinetic data to determine the activation parameters for Ni-0.22@Ir-0.78/OMS-2-catalyzed dehydrogenation of HB.Article Citation - WoS: 102Citation - Scopus: 107Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane With an Exceptional Reusability Performance(Amer Chemical Soc, 2012) Kaya, Murat; Zahmakiran, Mehmet; Ozkar, Saim; Volkan, MurvetHerein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO2/CoFe2O4 particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO2/CoFe2O4 followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH3BH3 and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N-2 adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO2/CoFe2O4 (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction.. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up, to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst.Article Citation - WoS: 5Citation - Scopus: 5Designing a Solution Processable Poly(3,4-Ethylenedioxyselenophene) Analogue(Amer Chemical Soc, 2018) Ertan, Salih; Cihaner, AtillaA new derivative (EDOS-POSS) of 3,4-ethylenedioxyselenophene integrated with alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage was synthesized and characterized. The electroactive monomer was successfully polymerized via both chemical and electrochemical methods. The obtained polymer called PEDOS-POSS was solution-processable and soluble in common organic solvents like tetrahydrofuran, toluene, dichloromethane, and chloroform. PEDOS-POSS polymer exhibited electrochromic behavior: pure blue when neutralized and highly transparent when oxidized. When compared to the parent PEDOS (1.40 eV with lambda(max) = 673 nm), PEDOS-POSS polymer film has a somewhat higher band gap (1.50 eV with lambda(max) = 668 and 724 nm). Also, PEDOS POSS exhibited high optical contrast ratio (59%) and coloration efficiency (593 cm(2)/C for 95% switching) with a low switching time (0.7 s) due to the presence of POSS cage in the polymer backbone. In addition, PEDOS-POSS polymer film was highly robust and stable under ambient conditions (without purging the electrolyte solution with inert gas). Polymer films demonstrated high electrochemical stability; for example, it retained 76% of its electroactivity after 5000 cycles. Furthermore, the polymers exhibited fluorescent properties and exhibited a reddish orange emission centered about at 640 nm. Based on the findings, to the best of our knowledge, it can be concluded that the polymers are the first examples of soluble and fluorescent PEDOS derivatives. These promising properties make PEDOS-POSS polymer a potential material for bioapplications like imaging the cancer cells as well as optoelectronic applications.Article Citation - WoS: 19Citation - Scopus: 18Deviations From Born-Oppenheimer Theory in Structural Chemistry: Jahn-Teller, Pseudo Jahn-Teller, and Hidden Pseudo Jahn-Teller Effects in C3h3< and C3h3<(Amer Chemical Soc, 2013) Kayi, H.; Garcia-Fernandez, P.; Bersuker, I. B.; Boggs, J. E.The electronic structure and vibronic coupling in two similar molecular systems, radical C3H3 and anion C3H3-, in ground and excited states, are investigated in detail to show how their equilibrium structures, in deviation from the Born-Oppenheimer approximation, originate from the vibronic mixing of at least two electronic states, producing the Jahn-Teller UT), pseudo JT (PJT), and hidden PJT effects. Starting with the high-symmetry geometry D3h of C3H3, we evaluated its 2-fold degenerate ground electronic state 2E" and two lowest excited states 2A,' and 2E' and found that all of them contribute to the distortion of the ground state via the JT vibronic coupling problem E" e' and two PJT problems (E" + A(1)') circle star e" and (E" + E') circle times (a2" + e"); all the three active normal modes e'(1335 e"(1030 cm(-1)), and a2"(778 cm(-1)) are imaginary, meaning that all the three vibronic couplings are sufficiently strong to cause instability, albeit in different directions. The first of them, the ground state JT effect, enhances one of the C-C bonds (toward an ethylenic form with C-2v symmetry), while the two PJT effects produce, respectively, cis (a(2)" toward C-3v symmetry) and trans (e") puckering of the hydrogen atoms. As a result, C3H3 has two coexisting equilibrium configurations with different geometry. In the C3H3- anion, the ground electronic state in DA symmetry is an orbitally nondegenerate spin triplet (3)A(2)' with a group of close in energy singlet and triplet excited states in the order of (1)A(1),', (3)A(1)', E-1", E-3", and E-1'. This shows that two PJT couplings, (3A(2)' + (3)A(1)") circle times a(2)" and (3A2' + 3E") e", may influence the geometry of the equilibrium structure in the 3A2' state. Indeed, both vibrational modes, a(2)"(1034 cm(-1)) and e"(1284 cm(-1)), are imaginary in this state. Similar to the radical case, they produce, respectively, cis (a(2)") and trans (e") puckering of the hydrogen atoms, but no e' distortion of the basic C-3 triangle; the equilibrium configuration with Cs symmetry occurs along the stronger e" distortions. Another higher-in-energy triplet-state minimum with C-2v symmetry emerges as a result of a strong JTE in the excited 3E" electronic state. In addition to these APES minima with spin-triplet electronic states, the system has a coexisting minimum with a spin-singlet electronic state, which is shown to be due to the hidden PJT effect that couples two singlet excited states. The two lowest equilibrium configurations of the C3H3- anion with different geometry and spin realize a (common to all electronic e(2) configurations) magnetic and structural bistability accompanied by a spin crossover. Some general spectroscopic consequences are also noted. As a whole, this article is intended to demonstrate the efficiency of the vibronic coupling approach in rationalizing the origin of complicated structural features of molecular systems as due to a combination of nonadiabatic JT effects.Article Citation - WoS: 7Citation - Scopus: 7Dft Insights Into Noble Gold-Based Compound Li5aup2: Effect of Pressure on Physical Properties(Amer Chemical Soc, 2023) Surucu, Gokhan; Gencer, Aysenur; Surucu, Ozge; Ali, Md. AshrafIn this study, the Li5AuP2 compound is investigated in detail due to the unique chemical properties of gold that are different from other metals. Pressure is applied to the compound from 0 to 25 GPa to reveal its structural, mechanical, electronic, and dynamical properties using density functional theory (DFT). Within this pressure range, the compound is optimized with a tetragonal crystal structure, making it mechanically and dynam-ically stable above 18 GPa and resulting in an increment of bulk, shear, and Young's moduli of Li5AuP2. Pressure application, furthermore, changes the brittle or ductile nature of the compound. The anisotropic elastic and sound wave velocities are visualized in three dimensions. The thermal properties of the Li5AuP2 compound are obtained, including enthalpy, free energy, entropy x T, heat capacity, and Debye temperature. The electronic properties of the Li5AuP2 compound are studied using the Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE) functionals. The pressure increment is found to result in higher band gap values. The Mulliken and bond overlap populations are also determined to reveal the chemical nature of this compound. The optical properties, such as dielectric functions, refractive index, and energy loss function of the Li5AuP2 compound, are established in detail. To our knowledge, this is the first attempt to study this compound in such detail, thus, making the results obtained here beneficial for future studies related to the chemistry of gold.Article Citation - WoS: 14Dissociative Adsorption of Water at (211) Stepped Metallic Surfaces by First-Principles Simulations(Amer Chemical Soc, 2017) Pekoz, Rengin; Donadio, DavideSteps at high-index metallic surfaces display higher chemical reactivity than close-packed surfaces and may give rise to selective adsorption and partial dissociation of water. Inspired by differential desorption experiments, we have studied the adsorption and dissociation of water clusters and one-dimensional wires on Pt(211) by density functional theory and molecular dynamics simulations. These calculations reveal that water at the step edges of Pt(211) adsorbs more weakly than at Pt(221), but partial dissociation of adsorbed water clusters is energetically competitive. We observe that the one-dimensional structure proposed experimentally can be realized only by partially dissociated water wires. In addition, weaker adsorption allows the formation of structures in which a number of water molecules detach from the step and form weak hydrogen bonds with the terrace. This study is further extended to the energetics of small water clusters on (211) surfaces of Ir, Rh, and Pd.Article Citation - WoS: 143Citation - Scopus: 157Donor-Acceptor Polymer Electrochromes With Tunable Colors and Performance(Amer Chemical Soc, 2010) Icli, Merve; Pamuk, Melek; Algi, Fatih; Onal, Ahmet M.; Cihaner, AtillaTo demonstrate the effect of donor (D) and acceptor (A) units on the structure property relationships of electrochromic polymers, design, synthesis, characterization and polymerization of a series of D A type systems, 1-5, based on thiophene, 3,4-ethylenedioxythiophene, and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine as D units and 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole and 2-decyl-2H-benzo[d][1,2,3]triazole as A units are highlighted. It is found that these units play key roles on the redox behavior, band gap, neutral state color, and the electrochromic performance (stability, optical contrast, coloration efficiency, and switching time) of the system. It is noted that electropolymerization of these D-A systems provides processable low band gap electrochromes, P1-P5, exhibiting high redox stability, coloration efficiency, transmittance and/or contrast ratio and low response time. Furthermore, P1-P5 reflect various hues of blue and green pallets of the RGB color-space in the neutral state. In particular, it is noteworthy that P5 is an excellent blue-to-colorless polymeric electrochrome, which, to our best knowledge, exhibits the highest optical contrast and coloration efficiency among the D A type systems. The panoramic breadth of the neutral state colors and intriguing features of these polymeric materials further confirm that D A approach allows engineering tunable electrochromes, which hold promise for commercialization of polymeric ROB electrochromics.Conference Object Effect of Novel Pp60c-src Inhibitors on Mammalian Glutathione S-Transferase Activity(Amer Chemical Soc, 2010) Isgor, Belgin Sultan; Isgor, Yasemin Gulgun; Kilic-Kurt, Zuhal; Olgen, Sureyya[No Abstract Available]Article Citation - WoS: 4Citation - Scopus: 3Exploring the Thermal Stability of Sb2se3 for Potential Applications Through Advanced Thermal Analysis Methods(Amer Chemical Soc, 2025) Altuntas, Gozde; Isik, Mehmet; Surucu, Gokhan; Parlak, Mehmet; Surucu, OzgeAntimony selenide (Sb2Se3) is a promising material for energy applications, including photovoltaics, thermoelectrics, and photodetectors, due to its favorable electronic properties, availability, and low toxicity. However, its thermal stability, crucial for device efficiency and reliability, has been less explored, leaving a gap in understanding its high-temperature suitability. This study evaluates the thermal stability of Sb2Se3 using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results show that Sb2Se3 remains stable up to 500 degrees C, with two significant weight loss stages: 1.75% between 500 and 610 degrees C, and 3.50% between 610 and 775 degrees C, indicating decomposition processes. Activation energies for the decomposition phases were determined as 121.8 and 57.2 kJ/mol using the Coats-Redfern method. Additionally, an endothermic phase transition was observed between 599 and 630.6 degrees C via DSC analysis. These findings demonstrate Sb2Se3's potential for high-temperature energy applications, providing essential insights for optimizing its use in solar cells, thermoelectric devices, and other technologies.Article Citation - WoS: 61Citation - Scopus: 63Fabrication of Supramolecular N/P-nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media(Amer Chemical Soc, 2017) Khalily, Mohammad Aref; Bakan, Gokhan; Kucukoz, Betul; Topal, Ahmet Emin; Karatay, Ahmet; Yaglioglu, H. Gul; Guler, Mustafa O.Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack pi-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type beta-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A D-A unit cells having an association constant (K-A) of 5.18 x 10(5) M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.Article Citation - WoS: 59Fast Neutron Imaging With Semiconductor Nanocrystal Scintillators(Amer Chemical Soc, 2020) McCall, Kyle M.; Sakhatskyi, Kostiantyn; Lehmann, Eberhard; Walfort, Bernhard; Losko, Adrian S.; Montanarella, Federico; Kovalenko, Maksym, VFast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr(3) NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at similar to 2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr(3) light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr(3) is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.Article Citation - WoS: 24Citation - Scopus: 24Light-Induced Paramagnetism in Colloidal Ag+-doped Cdse Nanoplatelets(Amer Chemical Soc, 2021) Najafi, Arman; Sharma, Manoj; Delikanli, Savas; Bhattacharya, Arinjoy; Murphy, Joseph R.; Pientka, James; Petrou, AthosWe describe a study of the magneto-optical properties of Ag+-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag+ impurities. The excitonic circular polarization (P-X) and the exciton Zeeman splitting (Delta E-Z) were recorded as a function of the magnetic field (B) and temperature (T). Both Delta E-Z and P-X have a Brillouin-function-like dependence on B and T, verifying the presence of paramagnetism in Ag+-doped CdSe NPLs. The observed light-induced magnetism is attributed to the transformation of nonmagnetic Ag+ ions into Ag2+, which have a nonzero magnetic moment. This work points to the possibility of incorporating these nanoplatelets into spintronic devices, in which light can be used to control the spin injection.Article Citation - WoS: 52Citation - Scopus: 57Members of Cmy Color Space: Cyan and Magenta Colored Polymers Based on Oxadiazole Acceptor Unit(Amer Chemical Soc, 2012) Ozkut, Merve Icli; Algi, Melek Pamuk; Oztas, Zahide; Algi, Fatih; Onal, Ahmet M.; Cihaner, AtillaIn this study, three novel oxadiazole-based polymers were synthesized and their electrochemical and optical properties were investigated. The polymers were found to have both p- and n-type doping properties accompanied by electrochromic response. Two polymer films exhibit cyan and magenta colors, which constitute two legs of CMY color spaces, in their neutral states and they are soluble in common-organic solvents. According to the color mixing theory, all colors in the visible spectrum including black color can be obtained by using these polymers with a yellow colored electrochromic polymer. Among these polymers, the polymer bearing propyledioxythiophene donor units has some superior properties like high stability (it retains 94% of its electroactivity after 2000 cycles), solubility, and high coloration efficiency (230 cm(2)/C), whereas as expected ethylenedioxythiophene containing one has the lowest band gap as 1.08 eV.Article Citation - WoS: 15Metal-Salt Enhanced Grafting of Vinylpyridine and Vinylimidazole Monomer Combinations in Radiation Grafted Membranes for High-Temperature PEM Fuel Cells(Amer Chemical Soc, 2020) Mojarrad, Naeimeh Rajabalizadeh; Sadeghi, Sahl; Kaplan, Begum Yarar; Guler, Enver; Gursel, Selmiye AlkanProton exchange membranes were prepared and characterized for utilization in high-temperature proton exchange membrane fuel cells, HT-PEMFCs. 1-vinylimidazole (1-VIm) and 4-vinylpyridine (4VP) monomers were simultaneously grafted onto pre-irradiated ETFE (ethylene-co-tetrafluoroethylene) films which were prepared using gamma-rays with a dose of 100 kGy, as a robust substrate to prepare acid-base composite membranes. The grafting reaction was performed at 60 degrees C for 24 h followed by protonation via phosphoric acid doping in the subsequent step. The effect of adding ferrous salts as promoters in grafting was investigated by characterization of resultant membranes via thermal gravimetric analysis and mechanical tests. The fuel cell tests were conducted under different relative humidities (RHs) and applied temperatures. Membranes prepared with salt addition exhibited superior proton conductivities. Results including up to 80 mS cm(-1) conductivity at 110 degrees C in 60% RH and excellent thermal stability, even at 300 degrees C, suggest these membranes are promising for HT-PEMFC applications.Article Citation - WoS: 128Mnox< Pdag Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature(Amer Chemical Soc, 2015) Bulut, Ahmet; Yurderi, Mehmet; Karatas, Yasar; Say, Zafer; Kivrak, Hilal; Kaya, Murat; Zahmakiran, MehmetFormic acid (HCOOH) has a great potential as a safe and a convenient hydrogen carrier for fuel cell applications. However, efficient and CO-free hydrogen production through the decomposition of formic acid at low temperatures (<363 K) in the absence of additives constitutes a major challenge. Herein, we present a new heterogeneous catalyst system composed of bimetallic PdAg alloy and MnOx nanoparticles supported on amine-grafted silica facilitating the liberation of hydrogen at room temperature through the dehydrogenation of formic acid in the absence of any additives with remarkable activity (330 mol H-2 center dot mol catalyst(-1)center dot h(-1)) and selectivity (>99%) at complete conversion (>99%). Moreover this new catalytic system enables facile catalyst recovery and very high stability against agglomeration, leaching, and CO poisoning. Through a comprehensive set of structural and functional characterization experiments, mechanistic origins of the unusually high catalytic activity, selectivity, and stability of this unique catalytic system are elucidated. Current heterogeneous catalytic architecture presents itself as an excellent contender for clean hydrogen production via room-temperature additive-free dehydrogenation of formic acid for on-board hydrogen fuel cell applications.

