Fabrication of Supramolecular n/p-Nanowires <i>via</i> Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Chemical Soc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack pi-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type beta-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A D-A unit cells having an association constant (K-A) of 5.18 x 10(5) M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.
Description
Guler, Mustafa O./0000-0003-1168-202X; KARATAY, Ahmet/0000-0001-9373-801X; Küçüköz, Betül/0000-0002-5677-0069; Topal, Ahmet Emin/0000-0001-9951-0171; Yaglioglu, Halime Gul/0000-0002-7846-8207
Keywords
nanowires, self-assembly, coassembly, supramolecular, peptide chromophore, conductivity
Turkish CoHE Thesis Center URL
Fields of Science
Citation
57
WoS Q
Q1
Scopus Q
Q1
Source
Volume
11
Issue
7
Start Page
6881
End Page
6892