Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane With an Exceptional Reusability Performance

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Department
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO2/CoFe2O4 particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO2/CoFe2O4 followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH3BH3 and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N-2 adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO2/CoFe2O4 (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction.. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up, to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst.

Description

Ozkar, S/0000-0002-6302-1429; Volkan, Murvet/0000-0001-5112-9486; Kaya, Murat/0000-0002-2458-8924

Keywords

copper, nanoparticles, magnetic, silica, ammonia-borane, hydrogen

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
100

Source

Volume

4

Issue

8

Start Page

3866

End Page

3873

Collections

PlumX Metrics
Citations

CrossRef : 93

Scopus : 106

PubMed : 7

Captures

Mendeley Readers : 76

SCOPUS™ Citations

106

checked on Nov 02, 2025

Web of Science™ Citations

101

checked on Nov 02, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
5.221

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo