Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma

dc.authorid kaya, zeynep/0000-0001-9831-6246
dc.authorid Anagun, Yildiray/0000-0002-7743-0709
dc.authorid Basarir, Lale/0000-0001-8620-6429
dc.authorid KOCA, Nizameddin/0000-0003-1457-4366
dc.authorid KURT, ZUHAL/0000-0003-1740-6982
dc.authorid isik, sahin/0000-0003-1768-7104
dc.authorscopusid 55806648900
dc.authorscopusid 56247318100
dc.authorscopusid 56247256600
dc.authorscopusid 55293387500
dc.authorscopusid 55257455900
dc.authorscopusid 57822380500
dc.authorwosid kaya, zeynep/N-5338-2015
dc.authorwosid Anagun, Yildiray/AAH-6965-2021
dc.authorwosid Basarir, Lale/AFI-8643-2022
dc.authorwosid KOCA, Nizameddin/V-9228-2017
dc.authorwosid KURT, ZUHAL/AAE-5182-2022
dc.authorwosid isik, sahin/H-5373-2018
dc.contributor.author Kurt, Zuhal
dc.contributor.author Isik, Sahin
dc.contributor.author Kaya, Zeynep
dc.contributor.author Anagun, Yildiray
dc.contributor.author Koca, Nizameddin
dc.contributor.author Cicek, Suemeyye
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:25:08Z
dc.date.available 2024-07-05T15:25:08Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Kurt, Zuhal] Atilim Univ, Dept Comp Engn, Ankara, Turkiye; [Isik, Sahin; Anagun, Yildiray] Eskisehir Osmangazi Univ, Dept Comp Engn, Meselik Campus, Eskisehir, Turkiye; [Kaya, Zeynep] Bilecik Seyh Edebali Univ, Osmaneli Vocat Sch, Dept Elect & Energy, Bilecik, Turkiye; [Koca, Nizameddin; Cicek, Suemeyye] Univ Hlth Sci, Bursa Yuksek Ihtisas Training & Res Hosp, Dept Internal Med, Bursa, Turkiye en_US
dc.description kaya, zeynep/0000-0001-9831-6246; Anagun, Yildiray/0000-0002-7743-0709; Basarir, Lale/0000-0001-8620-6429; KOCA, Nizameddin/0000-0003-1457-4366; KURT, ZUHAL/0000-0003-1740-6982; isik, sahin/0000-0003-1768-7104 en_US
dc.description.abstract When the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1007/s00521-023-08344-z
dc.identifier.endpage 12132 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 16 en_US
dc.identifier.pmid 36843903
dc.identifier.scopus 2-s2.0-85148439982
dc.identifier.startpage 12121 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-023-08344-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/2512
dc.identifier.volume 35 en_US
dc.identifier.wos WOS:000935466800001
dc.identifier.wosquality Q2
dc.institutionauthor Kurt, Zühal
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 19
dc.subject COVID-19 detection en_US
dc.subject CT scan en_US
dc.subject Lung parenchyma en_US
dc.subject Deep learning en_US
dc.subject EfficientNet en_US
dc.subject K-means en_US
dc.title Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscovery c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections