Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma

dc.authoridkaya, zeynep/0000-0001-9831-6246
dc.authoridAnagun, Yildiray/0000-0002-7743-0709
dc.authoridBasarir, Lale/0000-0001-8620-6429
dc.authoridKOCA, Nizameddin/0000-0003-1457-4366
dc.authoridKURT, ZUHAL/0000-0003-1740-6982
dc.authoridisik, sahin/0000-0003-1768-7104
dc.authorscopusid55806648900
dc.authorscopusid56247318100
dc.authorscopusid56247256600
dc.authorscopusid55293387500
dc.authorscopusid55257455900
dc.authorscopusid57822380500
dc.authorwosidkaya, zeynep/N-5338-2015
dc.authorwosidAnagun, Yildiray/AAH-6965-2021
dc.authorwosidBasarir, Lale/AFI-8643-2022
dc.authorwosidKOCA, Nizameddin/V-9228-2017
dc.authorwosidKURT, ZUHAL/AAE-5182-2022
dc.authorwosidisik, sahin/H-5373-2018
dc.contributor.authorKurt, Zuhal
dc.contributor.authorIsik, Sahin
dc.contributor.authorKaya, Zeynep
dc.contributor.authorAnagun, Yildiray
dc.contributor.authorKoca, Nizameddin
dc.contributor.authorCicek, Suemeyye
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:25:08Z
dc.date.available2024-07-05T15:25:08Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Kurt, Zuhal] Atilim Univ, Dept Comp Engn, Ankara, Turkiye; [Isik, Sahin; Anagun, Yildiray] Eskisehir Osmangazi Univ, Dept Comp Engn, Meselik Campus, Eskisehir, Turkiye; [Kaya, Zeynep] Bilecik Seyh Edebali Univ, Osmaneli Vocat Sch, Dept Elect & Energy, Bilecik, Turkiye; [Koca, Nizameddin; Cicek, Suemeyye] Univ Hlth Sci, Bursa Yuksek Ihtisas Training & Res Hosp, Dept Internal Med, Bursa, Turkiyeen_US
dc.descriptionkaya, zeynep/0000-0001-9831-6246; Anagun, Yildiray/0000-0002-7743-0709; Basarir, Lale/0000-0001-8620-6429; KOCA, Nizameddin/0000-0003-1457-4366; KURT, ZUHAL/0000-0003-1740-6982; isik, sahin/0000-0003-1768-7104en_US
dc.description.abstractWhen the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments.en_US
dc.identifier.citation5
dc.identifier.doi10.1007/s00521-023-08344-z
dc.identifier.endpage12132en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue16en_US
dc.identifier.pmid36843903
dc.identifier.scopus2-s2.0-85148439982
dc.identifier.startpage12121en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-023-08344-z
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2512
dc.identifier.volume35en_US
dc.identifier.wosWOS:000935466800001
dc.identifier.wosqualityQ2
dc.institutionauthorKurt, Zühal
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOVID-19 detectionen_US
dc.subjectCT scanen_US
dc.subjectLung parenchymaen_US
dc.subjectDeep learningen_US
dc.subjectEfficientNeten_US
dc.subjectK-meansen_US
dc.titleEvaluation of EfficientNet models for COVID-19 detection using lung parenchymaen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscoveryc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections