Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma

dc.contributor.author Kurt, Zuhal
dc.contributor.author Isik, Sahin
dc.contributor.author Kaya, Zeynep
dc.contributor.author Anagun, Yildiray
dc.contributor.author Koca, Nizameddin
dc.contributor.author Cicek, Suemeyye
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:25:08Z
dc.date.available 2024-07-05T15:25:08Z
dc.date.issued 2023
dc.description kaya, zeynep/0000-0001-9831-6246; Anagun, Yildiray/0000-0002-7743-0709; Basarir, Lale/0000-0001-8620-6429; KOCA, Nizameddin/0000-0003-1457-4366; KURT, ZUHAL/0000-0003-1740-6982; isik, sahin/0000-0003-1768-7104 en_US
dc.description.abstract When the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments. en_US
dc.identifier.doi 10.1007/s00521-023-08344-z
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85148439982
dc.identifier.uri https://doi.org/10.1007/s00521-023-08344-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/2512
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Neural Computing and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject COVID-19 detection en_US
dc.subject CT scan en_US
dc.subject Lung parenchyma en_US
dc.subject Deep learning en_US
dc.subject EfficientNet en_US
dc.subject K-means en_US
dc.title Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id kaya, zeynep/0000-0001-9831-6246
gdc.author.id Anagun, Yildiray/0000-0002-7743-0709
gdc.author.id Basarir, Lale/0000-0001-8620-6429
gdc.author.id KOCA, Nizameddin/0000-0003-1457-4366
gdc.author.id KURT, ZUHAL/0000-0003-1740-6982
gdc.author.id isik, sahin/0000-0003-1768-7104
gdc.author.institutional Kurt, Zühal
gdc.author.scopusid 55806648900
gdc.author.scopusid 56247318100
gdc.author.scopusid 56247256600
gdc.author.scopusid 55293387500
gdc.author.scopusid 55257455900
gdc.author.scopusid 57822380500
gdc.author.wosid kaya, zeynep/N-5338-2015
gdc.author.wosid Anagun, Yildiray/AAH-6965-2021
gdc.author.wosid Basarir, Lale/AFI-8643-2022
gdc.author.wosid KOCA, Nizameddin/V-9228-2017
gdc.author.wosid KURT, ZUHAL/AAE-5182-2022
gdc.author.wosid isik, sahin/H-5373-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kurt, Zuhal] Atilim Univ, Dept Comp Engn, Ankara, Turkiye; [Isik, Sahin; Anagun, Yildiray] Eskisehir Osmangazi Univ, Dept Comp Engn, Meselik Campus, Eskisehir, Turkiye; [Kaya, Zeynep] Bilecik Seyh Edebali Univ, Osmaneli Vocat Sch, Dept Elect & Energy, Bilecik, Turkiye; [Koca, Nizameddin; Cicek, Suemeyye] Univ Hlth Sci, Bursa Yuksek Ihtisas Training & Res Hosp, Dept Internal Med, Bursa, Turkiye en_US
gdc.description.endpage 12132 en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 12121 en_US
gdc.description.volume 35 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4321435980
gdc.identifier.pmid 36843903
gdc.identifier.wos WOS:000935466800001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 23.0
gdc.oaire.influence 3.8842907E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Original Article
gdc.oaire.popularity 2.066031E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 7.095
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 18
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 40
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.wos.citedcount 12
relation.isAuthorOfPublication c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscovery c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections