Using Deep Learning Approaches for Coloring Silicone Maxillofacial Prostheses: a Comparison of Two Approaches

dc.contributor.author Kurt, Meral
dc.contributor.author Kurt, Zuhal
dc.contributor.author Isik, Sahin
dc.date.accessioned 2024-07-05T15:24:07Z
dc.date.available 2024-07-05T15:24:07Z
dc.date.issued 2023
dc.description KURT, ZUHAL/0000-0003-1740-6982 en_US
dc.description.abstract Aim: This study aimed to compare the performance of two deep learning algorithms, attention-based gated recurrent unit (GRU), and the artificial neural networks (ANNs) algorithm for coloring silicone maxillofacial prostheses. Settings and Design: This was an in vitro study. Materials and Methods: A total of 21 silicone samples in different colors were produced with four pigments (white, yellow, red, and blue). The color of the samples was measured with a spectrophotometer, then the LFNx01, aFNx01, and bFNx01 values were recorded. The relationship between the LFNx01, aFNx01, and bFNx01 values of each sample and the amount of each pigment in the compound of the same sample was used as the training dataset, entered into each algorithm, and the prediction models were obtained. While generating the prediction model for each sample, the data of the corresponding sample assigned as the target color were excluded. LFNx01, aFNx01, and bFNx01 values of each target sample were entered into the obtained models separately, and recipes indicating the ratios for mixing the four pigments were predicted. The mean absolute error (MAE) and root mean square error (RMSE) values between the original recipe used in the production of each silicone and the recipe created by both prediction models for the same silicone were calculated. Statistical Analysis Used: Data were analyzed with the Student t-test (alpha=0.05). Results: The mean RMSE values and MAE values for the ANN algorithm (0.029 & PLUSMN; 0.0152 and 0.045 & PLUSMN; 0.0235, respectively) were found significantly higher than the attention-based GRU model (0.001 & PLUSMN; 0.0005 and 0.002 & PLUSMN; 0.0008, respectively) (P < 0.001). Conclusions: Attention-based GRU model provided better performance than the ANN algorithm with respect to the MAE and RMSE values. en_US
dc.identifier.doi 10.4103/jips.jips_149_22
dc.identifier.issn 0972-4052
dc.identifier.issn 1998-4057
dc.identifier.scopus 2-s2.0-85145345445
dc.identifier.uri https://doi.org/10.4103/jips.jips_149_22
dc.identifier.uri https://hdl.handle.net/20.500.14411/2393
dc.language.iso en en_US
dc.publisher Wolters Kluwer Medknow Publications en_US
dc.relation.ispartof The Journal of Indian Prosthodontic Society
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial neural networks en_US
dc.subject attention-based gated recurrent unit en_US
dc.subject deep learning en_US
dc.subject maxillofacial silicone en_US
dc.title Using Deep Learning Approaches for Coloring Silicone Maxillofacial Prostheses: a Comparison of Two Approaches en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id KURT, ZUHAL/0000-0003-1740-6982
gdc.author.scopusid 57226344964
gdc.author.scopusid 55806648900
gdc.author.scopusid 56247318100
gdc.author.wosid KURT, Meral/AAP-4090-2021
gdc.author.wosid KURT, ZUHAL/AAE-5182-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kurt, Meral] Gazi Univ, Fac Dent, Dept Prosthodont, TR-06510 Ankara, Turkiye; [Kurt, Zuhal] Atilim Univ, Fac Engn, Dept Comp Engn, Ankara, Turkiye; [Isik, Sahin] Eskisehir Osmangazi Univ, Fac Engn, Dept Comp Engn, Eskisehir, Turkiye en_US
gdc.description.endpage 89 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 84 en_US
gdc.description.volume 23 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4313232294
gdc.identifier.pmid 36588380
gdc.identifier.wos WOS:000906757800013
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.0245175E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Maxillofacial Prosthesis
gdc.oaire.keywords Prosthesis Coloring
gdc.oaire.keywords Research
gdc.oaire.keywords deep learning
gdc.oaire.keywords Color
gdc.oaire.keywords RK1-715
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Dentistry
gdc.oaire.keywords Materials Testing
gdc.oaire.keywords Silicone Elastomers
gdc.oaire.keywords Humans
gdc.oaire.keywords attention-based gated recurrent unit
gdc.oaire.keywords artificial neural networks
gdc.oaire.keywords maxillofacial silicone
gdc.oaire.popularity 1.1426025E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration National
gdc.openalex.fwci 3.62838688
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 9
gdc.plumx.mendeley 19
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.virtual.author Kurt, Zühal
gdc.wos.citedcount 9
relation.isAuthorOfPublication c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscovery c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections