Hybrid Polymeric Scaffolds Prepared by Micro and Macro Approaches
| dc.contributor.author | Ozkan, Ozan | |
| dc.contributor.author | Sasmazel, Hilal Turkoglu | |
| dc.contributor.other | Metallurgical and Materials Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:16:17Z | |
| dc.date.available | 2024-07-05T15:16:17Z | |
| dc.date.issued | 2017 | |
| dc.description | Turkoglu Sasmazel, Hilal/0000-0002-0254-4541; Ozkan, Ozan/0000-0002-9050-1583 | en_US |
| dc.description.abstract | Polymeric scaffolds with complex porous structures were fabricated with two different polymers by combining three fabrication methods in three steps, in which, nonwoven poly(e-caprolactone) microfibers were obtained with electrospinning and immersed in solvent cast chitosan solution poured in Petri dish to fabricate hybrid polymers, and finally the combined structure was freeze-dried with two different predrying techniques to obtain macropores in the structure. The resulting hybrid polymeric mats were found to have both microfibers and macroporosity due to the electrospinning as well as freeze-drying processes, which resemble the natural extracellular matrix. The optimized scaffolds that predried in the incubator at 40 degrees C for 5 h and then freeze-dried for 24 h exhibited contact angle value of 68.93 +/- 2.18 degrees with 3.252 +/- 0.783 MPa Young's modulus and 0.260 +/- 0.002 MPa yield strength as well as 1.35-fold cell yield in MRC5 fibroblast cell culture, compared to the commercial tissue culture polystyrene. [GRAPHICS] . | en_US |
| dc.identifier.doi | 10.1080/00914037.2016.1278218 | |
| dc.identifier.issn | 0091-4037 | |
| dc.identifier.issn | 1563-535X | |
| dc.identifier.scopus | 2-s2.0-85028598704 | |
| dc.identifier.uri | https://doi.org/10.1080/00914037.2016.1278218 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1622 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis As | en_US |
| dc.relation.ispartof | International Journal of Polymeric Materials and Polymeric Biomaterials | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Chitosan | en_US |
| dc.subject | electrospinning | en_US |
| dc.subject | freeze-drying | en_US |
| dc.subject | MRC5 fibroblasts | en_US |
| dc.subject | PCL | en_US |
| dc.subject | solvent casting | en_US |
| dc.title | Hybrid Polymeric Scaffolds Prepared by Micro and Macro Approaches | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Turkoglu Sasmazel, Hilal/0000-0002-0254-4541 | |
| gdc.author.id | Ozkan, Ozan/0000-0002-9050-1583 | |
| gdc.author.institutional | Özkan, Ozan | |
| gdc.author.institutional | Şaşmazel, Hilal Türkoğlu | |
| gdc.author.scopusid | 57189848353 | |
| gdc.author.scopusid | 16680382000 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ozkan, Ozan] Hacettepe Univ, Bioengn Div, Ankara, Turkey; [Sasmazel, Hilal Turkoglu] Atilim Univ, Dept Met & Mat Engn, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 860 | en_US |
| gdc.description.issue | 16 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 853 | en_US |
| gdc.description.volume | 66 | en_US |
| gdc.identifier.openalex | W2586312846 | |
| gdc.identifier.wos | WOS:000416503300006 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 2.8132192E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.5911241E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0210 nano-technology | |
| gdc.openalex.fwci | 0.557 | |
| gdc.openalex.normalizedpercentile | 0.38 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 13 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | 741bfc12-0d53-48d4-bfa2-08290dbfcbeb | |
| relation.isAuthorOfPublication | 89a1446a-af3c-4bd3-a3f6-5f29625b68fd | |
| relation.isAuthorOfPublication.latestForDiscovery | 741bfc12-0d53-48d4-bfa2-08290dbfcbeb | |
| relation.isOrgUnitOfPublication | 7cf7435b-3e8e-404e-adee-0f6f7dc8e070 | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 7cf7435b-3e8e-404e-adee-0f6f7dc8e070 |