Hybrid polymeric scaffolds prepared by micro and macro approaches

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis As

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Polymeric scaffolds with complex porous structures were fabricated with two different polymers by combining three fabrication methods in three steps, in which, nonwoven poly(e-caprolactone) microfibers were obtained with electrospinning and immersed in solvent cast chitosan solution poured in Petri dish to fabricate hybrid polymers, and finally the combined structure was freeze-dried with two different predrying techniques to obtain macropores in the structure. The resulting hybrid polymeric mats were found to have both microfibers and macroporosity due to the electrospinning as well as freeze-drying processes, which resemble the natural extracellular matrix. The optimized scaffolds that predried in the incubator at 40 degrees C for 5 h and then freeze-dried for 24 h exhibited contact angle value of 68.93 +/- 2.18 degrees with 3.252 +/- 0.783 MPa Young's modulus and 0.260 +/- 0.002 MPa yield strength as well as 1.35-fold cell yield in MRC5 fibroblast cell culture, compared to the commercial tissue culture polystyrene. [GRAPHICS] .

Description

Turkoglu Sasmazel, Hilal/0000-0002-0254-4541; Ozkan, Ozan/0000-0002-9050-1583

Keywords

Chitosan, electrospinning, freeze-drying, MRC5 fibroblasts, PCL, solvent casting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

7

WoS Q

Scopus Q

Source

Volume

66

Issue

16

Start Page

853

End Page

860

Collections