Assessment of flood hazards due to overtopping and piping in Dalaman Akkopru Dam, employing both shallow water flow and diffusive wave equations

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Civil Engineering
(2000)
The Atılım University Department of Civil Engineering was founded in 2000 as a pioneer for the Departments of Civil Engineering among the foundation schools of Ankara. It offers education in English. The Department of Civil Engineering has an academic staff qualified in all areas of the education offered. In addition to a high level of academic learning that benefits from learning opportunities through practice at its seven laboratories, the Department also offers a Cooperative Education program conducted in cooperation with renowned organizations in the construction sector. Accredited by MÜDEK (Association of Evaluation and Accreditation of Engineering Programs) (in 2018), our Department has been granted the longest period of accreditation to ever achieve through the association (six years). The accreditation is recognized by ENAEE (European Network for Accreditation of Engineering Education), and other international accreditation boards.
Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

This study was carried out to determine flood propagation using shallow water equations (SWEs) and diffusive wave equations (DWEs) to reveal how the flood modeling results differ in terms of flow depth, flow velocity, and hazard level. The solution methods were tested based on the hypothetical failure of the Dalaman Akkopru Dam resulting from two failure mechanisms: overtopping (OT) and piping (PP). A 2D hydraulic model was constructed using HEC-RAS to determine the propagation of flood waves due to the failure of the dam by the mechanisms selected. Froehlich equations were applied to predict the breaching parameters of the dam. After calibration, the hydraulic model was run to determine the possible flooding magnitude in the towns of Ortaca, Dalaman, and Dalyan. The flood arrival times, maximum flow depths, flow velocities, and hazard classes were obtained for the Dalaman, Ortaca, and Dalyan city centers, and the Dalaman International Airport from the hydraulic model results. The modeling results showed that the inundated area is similar for both the SWEs and DWEs solutions, while the flow depth and velocity results are significantly different due to the neglected convective acceleration terms of the SWEs when deriving the DWEs. Considering the modeling results, even though the DWEs provide a computational cost advantage, the reliability of the solutions should be examined against the SWEs. Hazard maps were generated for both solution methods and failure mechanisms. The results revealed that most of the settlements in the basin have H5 and H6 hazard classes with a high risk of structural damage. Therefore, the installation of early warning systems and evacuation of district centers were suggested as mitigation measures. A feasible evacuation plan for the neighborhoods, taking into account the flood arrival time of the failure scenarios, is needed.

Description

Yilmaz, Kutay/0000-0001-5529-9239; Darama, Yakup/0000-0003-0066-2621; Melek, Abiddin Berhan/0000-0003-4018-9664; Oruc, Yunus/0000-0002-8929-1419

Keywords

Dam breach, Flood, Overtopping, Piping, Hydraulic modeling, Flood mitigation measures, Shallow water equations, Diffusive wave equations

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Q2

Scopus Q

Q1

Source

Volume

117

Issue

1

Start Page

979

End Page

1003

Collections