On idempotency and tripotency of linear combinations of two commuting tripotent matrices

dc.contributor.author Ozdemir, Halim
dc.contributor.author Sarduvan, Murat
dc.contributor.author Ozban, Ahmet Yasar
dc.contributor.author Guler, Nesrin
dc.date.accessioned 2024-07-05T14:33:58Z
dc.date.available 2024-07-05T14:33:58Z
dc.date.issued 2009
dc.description Özdemir, Halim/0000-0003-4624-437X; Güler, Nesrin/0000-0003-3233-5377 en_US
dc.description.abstract Let T-1 and T-2 be two nonzero commuting n x n tripotent matrices and c(1), c(2) two nonzero complex numbers. Necessary and sufficient conditions for the tripotency and the idempotency of c(1)T(1) + c(2)T(2) are obtained. The problems considered here have also statistical importance when c(1), c(2) are real scalars and T-1, T-2 are real symmetric matrices. (C) 2008 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.amc.2008.10.017
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-58249089281
dc.identifier.uri https://doi.org/10.1016/j.amc.2008.10.017
dc.identifier.uri https://hdl.handle.net/20.500.14411/999
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Applied Mathematics and Computation
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Idempotent matrix en_US
dc.subject Tripotent matrix en_US
dc.subject Quadratic form en_US
dc.subject Chi-square distribution en_US
dc.subject Diagonalization en_US
dc.title On idempotency and tripotency of linear combinations of two commuting tripotent matrices en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Özdemir, Halim/0000-0003-4624-437X
gdc.author.id Güler, Nesrin/0000-0003-3233-5377
gdc.author.scopusid 7004290618
gdc.author.scopusid 23098404800
gdc.author.scopusid 9276702800
gdc.author.scopusid 25649575300
gdc.author.wosid Özdemir, Halim/AAA-9437-2021
gdc.author.wosid Güler, Nesrin/AAR-6564-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ozban, Ahmet Yasar] Atilim Univ, Dept Math, TR-06836 Incek Ankara, Turkey; [Ozdemir, Halim; Sarduvan, Murat; Guler, Nesrin] Sakarya Univ, Dept Math, TR-54187 Sakarya, Turkey en_US
gdc.description.endpage 201 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 197 en_US
gdc.description.volume 207 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2030385829
gdc.identifier.wos WOS:000262613200018
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.6611105E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Mathematics
gdc.oaire.keywords idempotent matrix
gdc.oaire.keywords Canonical forms, reductions, classification
gdc.oaire.keywords Hermitian, skew-Hermitian, and related matrices
gdc.oaire.keywords Statistical distribution theory
gdc.oaire.keywords diagonalization
gdc.oaire.keywords tripotent matrix
gdc.oaire.keywords quadratic form
gdc.oaire.keywords chi-square distribution
gdc.oaire.keywords Commutativity of matrices
gdc.oaire.popularity 1.4250069E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.02550327
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 12
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.virtual.author Özban, Ahmet Yaşar
gdc.wos.citedcount 22
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections