On idempotency and tripotency of linear combinations of two commuting tripotent matrices
Loading...

Date
2009
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science inc
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Let T-1 and T-2 be two nonzero commuting n x n tripotent matrices and c(1), c(2) two nonzero complex numbers. Necessary and sufficient conditions for the tripotency and the idempotency of c(1)T(1) + c(2)T(2) are obtained. The problems considered here have also statistical importance when c(1), c(2) are real scalars and T-1, T-2 are real symmetric matrices. (C) 2008 Elsevier Inc. All rights reserved.
Description
Özdemir, Halim/0000-0003-4624-437X; Güler, Nesrin/0000-0003-3233-5377
Keywords
Idempotent matrix, Tripotent matrix, Quadratic form, Chi-square distribution, Diagonalization, Mathematics, idempotent matrix, Canonical forms, reductions, classification, Hermitian, skew-Hermitian, and related matrices, Statistical distribution theory, diagonalization, tripotent matrix, quadratic form, chi-square distribution, Commutativity of matrices
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
12
Source
Applied Mathematics and Computation
Volume
207
Issue
1
Start Page
197
End Page
201
PlumX Metrics
Citations
CrossRef : 11
Scopus : 20
Captures
Mendeley Readers : 4
SCOPUS™ Citations
21
checked on Feb 20, 2026
Web of Science™ Citations
22
checked on Feb 20, 2026
Page Views
4
checked on Feb 20, 2026
Google Scholar™


