On idempotency and tripotency of linear combinations of two commuting tripotent matrices

Loading...
Publication Logo

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Average

Research Projects

Journal Issue

Abstract

Let T-1 and T-2 be two nonzero commuting n x n tripotent matrices and c(1), c(2) two nonzero complex numbers. Necessary and sufficient conditions for the tripotency and the idempotency of c(1)T(1) + c(2)T(2) are obtained. The problems considered here have also statistical importance when c(1), c(2) are real scalars and T-1, T-2 are real symmetric matrices. (C) 2008 Elsevier Inc. All rights reserved.

Description

Özdemir, Halim/0000-0003-4624-437X; Güler, Nesrin/0000-0003-3233-5377

Keywords

Idempotent matrix, Tripotent matrix, Quadratic form, Chi-square distribution, Diagonalization, Mathematics, idempotent matrix, Canonical forms, reductions, classification, Hermitian, skew-Hermitian, and related matrices, Statistical distribution theory, diagonalization, tripotent matrix, quadratic form, chi-square distribution, Commutativity of matrices

Fields of Science

0101 mathematics, 01 natural sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
12

Source

Applied Mathematics and Computation

Volume

207

Issue

1

Start Page

197

End Page

201

Collections

PlumX Metrics
Citations

CrossRef : 11

Scopus : 20

Captures

Mendeley Readers : 4

SCOPUS™ Citations

21

checked on Feb 20, 2026

Web of Science™ Citations

22

checked on Feb 20, 2026

Page Views

4

checked on Feb 20, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.02550327

Sustainable Development Goals

SDG data is not available