On idempotency and tripotency of linear combinations of two commuting tripotent matrices
No Thumbnail Available
Date
2009
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science inc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let T-1 and T-2 be two nonzero commuting n x n tripotent matrices and c(1), c(2) two nonzero complex numbers. Necessary and sufficient conditions for the tripotency and the idempotency of c(1)T(1) + c(2)T(2) are obtained. The problems considered here have also statistical importance when c(1), c(2) are real scalars and T-1, T-2 are real symmetric matrices. (C) 2008 Elsevier Inc. All rights reserved.
Description
Özdemir, Halim/0000-0003-4624-437X; Güler, Nesrin/0000-0003-3233-5377
Keywords
Idempotent matrix, Tripotent matrix, Quadratic form, Chi-square distribution, Diagonalization
Turkish CoHE Thesis Center URL
Fields of Science
Citation
26
WoS Q
Q1
Scopus Q
Source
Volume
207
Issue
1
Start Page
197
End Page
201