Crystal data and some physical properties of Tl<sub>2</sub>InGaTe<sub>4</sub> crystals

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The room temperature crystal data, Debye temperature, dark and photoelectrical properties of the Bridgman method grown Tl2InGaTe4 crystals are reported for the first time. The X-ray diffraction technique has revealed that Tl(2)lnGaTe(4) is a single phase crystal of tetragonal body-centered structure belonging to the D-4H(18) - I4mcm space group. A Debye temperature of 124 K is calculated from the results of the X-ray data. The current-voltage measurements have shown the existence of the switching property of the crystals at a critical voltage of 80 V. The dark electrical resistivity and Hall effect measurements indicated the n-type conduction with an electrical resistivity, electron density and Hall mobility of 2.49x 10(3) Omega cm, 4.76x 10(12) cm(-3) and 527 cm V-2(-1) s(-1), respectively. The photosensitivity measurements on the crystal revealed that, the variation of photocurrent with illumination intensity is linear, indicating the domination of monomolecular recombination at room temperature. Moreover, the spectral distribution of the photocurrent allowed the determination of the energy band gap of the crystal studied as 0.88 cV.

Description

Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686

Keywords

X-ray diffraction, resistivity, mobility, photoconductivity, electronic transport

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Q3

Scopus Q

Source

Volume

42

Issue

8

Start Page

807

End Page

811

Collections