Comparative Analysis of Programming Languages Utilized in Artificial Intelligence Applications: Features, Performance, and Suitability

dc.authorscopusid59201711600
dc.authorscopusid57271674300
dc.authorscopusid8402817900
dc.contributor.authorTürkmen,G.
dc.contributor.authorSezen,A.
dc.contributor.authorŞengül,G.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T11:17:06Z
dc.date.available2024-10-06T11:17:06Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-tempTürkmen G., Atılım University, Engineering Faculty, Computer Engineering Department, Ankara, 06830, Turkey; Sezen A., Atılım University, Engineering Faculty, Computer Engineering Department, Ankara, 06830, Turkey; Şengül G., Atılım University, Engineering Faculty, Computer Engineering Department, Ankara, 06830, Turkeyen_US
dc.description.abstractThis study presents a detailed comparative analysis of the foremost programming languages employed in Artificial Intelligence (AI) applications: Python, R, Java, and Julia. These languages are analysed for their performance, features, ease of use, scalability, library support, and their applicability to various AI tasks such as machine learning, data analysis, and scientific computing. Each language is evaluated based on syntax and readability, execution speed, library ecosystem, and integration with external tools. The analysis incorporates a use case of code writing for a linear regression task. The aim of this research is to guide AI practitioners, researchers, and developers in choosing the most appropriate programming language for their specific needs, optimizing both the development process and the performance of AI applications. The findings also highlight the ongoing evolution and community support for these languages, influencing long-term sustainability and adaptability in the rapidly advancing field of AI. This comparative assessment contributes to a deeper understanding of how programming languages can enhance or constrain the development and implementation of AI technologies. © IJCESEN.en_US
dc.identifier.citation0
dc.identifier.doi10.22399/ijcesen.342
dc.identifier.endpage469en_US
dc.identifier.issn2149-9144
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85203684501
dc.identifier.scopusqualityQ4
dc.identifier.startpage461en_US
dc.identifier.urihttps://doi.org/10.22399/ijcesen.342
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9579
dc.identifier.volume10en_US
dc.identifier.wosqualityN/A
dc.institutionauthorTürkmen, Güzin
dc.institutionauthorSezen, Arda
dc.institutionauthorŞengül, Gökhan
dc.language.isoenen_US
dc.publisherProf.Dr. İskender AKKURTen_US
dc.relation.ispartofInternational Journal of Computational and Experimental Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAIen_US
dc.subjectMachine Learning Applicationsen_US
dc.subjectProgramming Languagesen_US
dc.titleComparative Analysis of Programming Languages Utilized in Artificial Intelligence Applications: Features, Performance, and Suitabilityen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication4aaa6f9a-60e2-4552-9c91-208fd7db4150
relation.isAuthorOfPublication367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery4aaa6f9a-60e2-4552-9c91-208fd7db4150
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections