Temperature effect on dark electrical conductivity, Hall coefficient, space charge limited current and photoconductivity of TlGaS<sub>2</sub> single crystals

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The dark electrical conductivity, Hall coefficient, space charge limited current, and illumination and temperature dependences of the photocurrent of TIGaS2 single crystals in the temperature regions of 100-350, 200-350, 200-290 and 100-350 K, respectively, have been measured and analysed. The Hall coefficient measurements revealed the extrinsic type of conduction with conductivity-type conversion from p- to n-type at a critical temperature of 315 K. The temperature dependence of the dark electrical conductivity exhibits activation behaviour with activation energies (0.360 +/- 0.005) eV and (0.240 +/- 0.005) eV at high and low temperatures, respectively. The space charge limited current analysis has shown that the energy level of (0.240 +/- 0.005) eV is a trapping state with trap density of (2.2-3.9) x 10(12) cm(-3). The data analysis of the photocurrent-temperature dependence has revealed two photoconductivity activation energies of (0.660 +/- 0.005) eV and (0.360 +/- 0.005) eV in the temperature regions of 290-350 K and 220-280 K, respectively. The illumination dependence of photoconductivity is found to exhibit linear and supralinear recombination mechanisms above and below 290 K, respectively.

Description

Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

27

WoS Q

Q3

Scopus Q

Source

Volume

20

Issue

5

Start Page

446

End Page

452

Collections