Effect of Au/Ge Substrate on the Properties of Gase

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In this work, the effect of glass/Ge and Au/Ge substrate on the structural, optical and electrical properties of the GaSe thin films is investigated by means of X-ray diffraction, ultraviolet-visible light spectrophotometry and impedance spectroscopy techniques, respectively. While the glass/Ge, glass/GaSe and glass/Ge/GaSe are observed to exhibit amorphous nature of structure, the Au/Ge, and Au/Ge/GaSe are of polycrystalline nature. The formation of the Ge/GaSe interface exhibited high conduction band offset of value of 0.90 eV and enhanced the light absorbability of GaSe at 1.47 eV by 80 times. In addition, the modeling of the dielectric spectra for the Ge/GaSe interface revealed optical conductivity parameters presented by scattering time at femtosecond level and improvement of the drift mobility. Moreover, the impedance spectroscopy measurements have shown that with the increasing frequency, the Au/Ge/GaSe/Yb interface exhibit increasing trend of variation in the resistance causing high impedance mode associated with negative capacitance values below 1300 MHz. The effect is completely reversed in the higher range of frequency. These features of the Ge/GaSe interface nominate it as plasmonic interface, microwave cavities and as voltage amplifiers in low power nanoscale devices. (C) 2018 Elsevier GmbH. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Ge substrate, Optical materials, Coating Dielectric properties, Drude-Lorentz

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
3

Source

Optik

Volume

168

Issue

Start Page

481

End Page

487

Collections

PlumX Metrics
Citations

Scopus : 3

Captures

Mendeley Readers : 7

SCOPUS™ Citations

3

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Page Views

4

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.15060634

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo