Neurological Regulation of the Bone Marrow Niche
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Springer international Publishing Ag
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The bone marrow (BM) hematopoietic niche is the microenvironment where in the adult hematopoietic stem and progenitor cells (HSPCs) are maintained and regulated. This regulation is tightly controlled through direct cell-cell interactions with mesenchymal stromal stem (MSCs) and reticular cells, adipocytes, osteoblasts and endothelial cells, through binding to extracellular matrix molecules and through signaling by cytokines and hematopoietic growth factors. These interactions provide a healthy environment and secure the maintenance of the HSPC pool, their proliferation, differentiation and migration. Recent studies have shown that innervation of the BM and interactions with the peripheral sympathetic neural system are important for maintenance of the hematopoietic niche, through direct interactions with HSCPs or via interactions with other cells of the HSPC microenvironment. Signaling through adrenergic receptors (ARs), opioid receptors (ORs), endocannabinoid receptors (CRs) on HSPCs and MSCs has been shown to play an important role in HSPC homeostasis and mobilization. In addition, a wide range of neuropeptides and neurotransmitters, such as Neuropeptide Y (NPY), Substance P (SP) and Tachykinins, as well as neurotrophins and neuropoietic growth factors have been shown to be involved in regulation of the hematopoietic niche. Here, a comprehensive overview is given of their role and interactions with important cells in the hematopoietic niche, including HSPCs and MSCs, and their effect on HSPC maintenance, regulation and mobilization.
Description
köse, sevil/0000-0003-2188-9534; Aerts Kaya, Fatima/0000-0002-9583-8572; KORKUSUZ, PETEK/0000-0002-7553-3915; Çetinkaya, Duygu Uçkan/0000-0003-3593-6493;
Keywords
Bone Marrow Niche, Endocannabinoids, Hematopoiesis, Neuropeptides, Opioids, Tachykinins
Turkish CoHE Thesis Center URL
Fields of Science
Citation
10
WoS Q
Scopus Q
Source
Volume
1212
Issue
Start Page
127
End Page
153