The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Humana Press inc

Research Projects

Organizational Units

Organizational Unit
Nutrition and Dietetics
(2017)
Student admission to the Atılım University Department of Nutrition and Dietetics started in 2017. Our Department is the only academic institution to offer undergraduate-level education completely in English in the field of Nutrition and Dietetics in Ankara. The studies of our department may be classified into two main categories; education and research. The current education programs are offered taking into consideration the awareness of the responsibility in offering a degree in Nutrition and Dietetics; by competent instructors in the field, and with an inter-disciplinary approach. Our aim for the future alumni of our undergraduate program is to undertake their responsibilities in the light of their information with a professional insight, and the confidence to constantly update themselves at hospitals, polyclinics, public health centers, ministries, catering institutions, food companies, universities and such where they may be employed in positions such as health care professionals, academicians, researchers, directors or policy makers.

Journal Issue

Abstract

Metabolic diseases or injuries damage bone structure and self-renewal capacity. Trace elements and hydroxyapatite crystals are important in the development of biomaterials to support the renewal of bone extracellular matrix. In this study, it was assumed that the boron-loaded nanometer-sized hydroxyapatite composite supports the construction of extracellular matrix by controlled boron release in order to prevent its toxic effect. In this context, boron release from nanometer-sized hydroxyapatite was calculated by ICP-MS as in large proportion within 1 h and continuing release was provided at a constant low dose. The effect of the boron-containing nanometer-sized hydroxyapatite composite on the proliferation of SaOS-2 osteoblasts and human bone marrow-derived mesenchymal stem cells was evaluated by WST-1 and compared with the effects of nano-hydroxyapatite and boric acid. Boron increased proliferation of mesenchymal stem cells at high doses and exhibited different effects on osteoblastic cell proliferation. Boron-containing nano-hydroxyapatite composites increased osteogenic differentiation of mesenchymal stem cells by increasing alkaline phosphatase activity, when compared to nano-hydroxyapatite composite and boric acid. The molecular mechanism of effective dose of boron-containing hydroxyapatite has been assessed by transcriptomic analysis and shown to affect genes involved in Wnt, TGF-beta, and response to stress signaling pathways when compared to nano-hydroxyapatite composite and boric acid. Finally, a safe osteoconductive dose range of boron-containing nano-hydroxyapatite composites for local repair of bone injuries and the molecular effect profile in the effective dose should be determined by further studies to validation of the regenerative therapeutic effect window.

Description

KORKUSUZ, FEZA/0000-0001-9486-3541; köse, sevil/0000-0003-2188-9534; Gizer, Merve/0000-0003-1911-2363; KORKUSUZ, PETEK/0000-0002-7553-3915; Karaosmanoglu, Beren/0000-0001-5564-4813; berkkan, aysel/0000-0003-4669-5496

Keywords

Bone, Boron, Nano-hydroxyapatite, SaOS-2, Mesenchymal stem cell, Transcriptome

Turkish CoHE Thesis Center URL

Citation

25

WoS Q

Q2

Scopus Q

Source

Volume

193

Issue

2

Start Page

364

End Page

376

Collections