Modeling and forecasting of monthly PM<sub>2.5</sub> emission of Paris by periodogram-based time series methodology

dc.authoridÜnlü, Kamil Demirberk/0000-0002-2393-6691
dc.authoridYucel, Eray/0000-0002-1038-4357
dc.authorscopusid9248321700
dc.authorscopusid57212081476
dc.authorscopusid57210105250
dc.authorscopusid59157974600
dc.authorwosidÜnlü, Kamil Demirberk/AAL-5952-2020
dc.authorwosidYucel, Eray/AAG-5262-2019
dc.contributor.authorAkdi, Yilmaz
dc.contributor.authorGolveren, Elif
dc.contributor.authorUnlu, Kamil Demirberk
dc.contributor.authorYucel, Mustafa Eray
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:16:53Z
dc.date.available2024-07-05T15:16:53Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Akdi, Yilmaz] Ankara Univ, Dept Stat, Fac Sci, Ankara, Turkey; [Golveren, Elif] Ataturk Univ, Fac Econ & Adm Sci, Dept Econometr, Erzurum, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, Ankara, Turkey; [Yucel, Mustafa Eray] Ihsan Dogramaci Bilkent Univ, Fac Econ Adm & Social Sci, Dept Econ, Ankara, Turkeyen_US
dc.descriptionÜnlü, Kamil Demirberk/0000-0002-2393-6691; Yucel, Eray/0000-0002-1038-4357en_US
dc.description.abstractIn this study, monthly particulate matter (PM2.5) of Paris for the period between January 2000 and December 2019 is investigated by utilizing a periodogram-based time series methodology. The main contribution of the study is modeling the PM2.5 of Paris by extracting the information purely from the examined time series data, where proposed model implicitly captures the effects of other factors, as all their periodic and seasonal effects reside in the air pollution data. Periodicity can be defined as the patterns embedded in the data other than seasonality, and it is crucial to understand the underlying periodic dynamics of air pollutants to better fight pollution. The method we use successfully captures and accounts for the periodicities, which could otherwise be mixed with seasonality under an alternative methodology. Upon the unit root test based on periodograms, it is revealed that the investigated data has periodicities of 1 year and 20 years, so harmonic regression is utilized as an alternative to Box-Jenkins methodology. As the harmonic regression displayed a better performance both in and out-of-sample forecasts, it can be considered as a powerful alternative to model and forecast time series with a periodic structure.en_US
dc.identifier.citation13
dc.identifier.doi10.1007/s10661-021-09399-y
dc.identifier.issn0167-6369
dc.identifier.issn1573-2959
dc.identifier.issue10en_US
dc.identifier.pmid34477984
dc.identifier.scopus2-s2.0-85114282547
dc.identifier.urihttps://doi.org/10.1007/s10661-021-09399-y
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1687
dc.identifier.volume193en_US
dc.identifier.wosWOS:000692445100001
dc.identifier.wosqualityQ3
dc.institutionauthorÜnlü, Kamil Demirberk
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHarmonic regressionen_US
dc.subjectAir pollutionen_US
dc.subjectTime series analysisen_US
dc.subjectPeriodicityen_US
dc.titleModeling and forecasting of monthly PM<sub>2.5</sub> emission of Paris by periodogram-based time series methodologyen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscoveryb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections