Theoretical modelling of magnetron sputtering of boron nitride coating

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

The fundamentals of the magnetron sputtering (MS) technique are simple. However, the complex interplay of various physical and chemical sub-processes lies in its simplicity. The direct simulation Monte Carlo (DSMC) method is used to model the MS of the Boron Nitride (BN) coating. The Lorentz force, which is created by an electric field, magnetic field and particle collision, is utilised to model the BN coating. Three distinct bias voltages are used to generate three different BN-coating models under the same conditions. The modelling of BN coatings reveals that the deposition rate decreases as the substrate voltage increases.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q4

Scopus Q

Q3

Source

Volume

13

Issue

1

Start Page

1

End Page

7

Collections