A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification

dc.contributor.author Kadhim, Yezi Ali
dc.contributor.author Guzel, Mehmet Serdar
dc.contributor.author Mishra, Alok
dc.date.accessioned 2024-09-10T21:32:54Z
dc.date.available 2024-09-10T21:32:54Z
dc.date.issued 2024
dc.description Mishra, Alok/0000-0003-1275-2050 en_US
dc.description.abstract Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN. en_US
dc.description.sponsorship Norwegian University of Science and Technology en_US
dc.description.sponsorship The authors thank the Norwegian University of Science and Technology, for the support of Open access fund. en_US
dc.identifier.doi 10.3390/diagnostics14141469
dc.identifier.issn 2075-4418
dc.identifier.scopus 2-s2.0-85199581111
dc.identifier.uri https://doi.org/10.3390/diagnostics14141469
dc.identifier.uri https://hdl.handle.net/20.500.14411/7275
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Diagnostics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject deep learning en_US
dc.subject autoencoder en_US
dc.subject classification en_US
dc.subject medical dataset en_US
dc.subject COVID-19 en_US
dc.subject brain tumor en_US
dc.subject meta-heuristic algorithm en_US
dc.title A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.scopusid 57214819564
gdc.author.scopusid 36349844700
gdc.author.scopusid 7201441575
gdc.author.wosid Mishra, Alok/D-7937-2012
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kadhim, Yezi Ali] Univ Baghdad, Coll Engn, Jadriyah 10071, Baghdad, Iraq; [Kadhim, Yezi Ali] Atilim Univ, Dept Modeling & Design Engn Syst MODES, TR-06830 Ankara, Turkiye; [Kadhim, Yezi Ali] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Incek, Ankara, Turkiye; [Guzel, Mehmet Serdar] Ankara Univ, Dept Comp Engn, TR-06100 Yenimahalle, Ankara, Turkiye; [Mishra, Alok] Norwegian Univ Sci & Technol, Fac Engn Sci & Technol, N-7034 Trondheim, Norway; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Incek, Ankara, Turkiye en_US
gdc.description.issue 14 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1469
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4400453937
gdc.identifier.pmid 39061605
gdc.identifier.wos WOS:001276739900001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.8184695E-9
gdc.oaire.isgreen true
gdc.oaire.keywords autoencoder
gdc.oaire.keywords Medicine (General)
gdc.oaire.keywords deep learning
gdc.oaire.keywords COVID-19
gdc.oaire.keywords Article
gdc.oaire.keywords R5-920
gdc.oaire.keywords classification
gdc.oaire.keywords medical dataset
gdc.oaire.keywords brain tumor
gdc.oaire.popularity 8.414906E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 7.37166436
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 25
gdc.plumx.newscount 1
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Mıshra, Alok
gdc.wos.citedcount 5
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections