Biosorption of Reactive Dyes by Novel Bacterium Leclercia Adecarboxylata: Complete Removal of Reactive Black 5 and Molecular Insights Into the Adsorption Mechanism

Loading...
Thumbnail Image

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

HYBRID

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Leclercia adecarboxylata isolated from the D & uuml;den Waterfall (Turkey) was utilized as a biosorbent for the removal of Reactive Black 5 (RB5), Setazol Blue BRF-X (BRF-X), Setazol Navy Blue SBG (SNB), and Setazol Turquoise Blue G (STBG). Of the dyes, RB5 was removed with the highest efficiency, 97.4% after 60 min. The effect of parameters such as pH (3-9), initial biosorbent dose (0.1-2.0 g/L), and initial dye concentration (25-1200 mg/L) on the biosorption of RB5 was investigated. Increasing the biosorbent dosage from 0.1 to 2.0 g/L enhanced the RB5 removal from 55.3% to 100% within 10 min. The complete removal (100%) of RB5 was achieved in media with 2.0 g/L biosorbent and 25 mg/L RB5 at pH 3 after 10 min. Additionally, the soluble extracellular polymeric substances (EPS) of L. adecarboxylata were found to consist of proteins, lipids, nucleic acids, and polysaccharides according to Fourier transform infrared spectroscopy (FTIR) analysis. The EPS was found to play a crucial role in dye removal, forming chemical interactions with dye molecules. Zeta potential analysis was used to evaluate the charge distribution on the biosorbent surface (-12.6 +/- 1.1 mV) and its interactions in the biosorption process. Kinetic and isotherm models suggested a complex interaction mechanism between the biomass and the dye. Adsorption isotherm data were analyzed via nine isotherm models. Among them, the Hill model was found to be the best fit for describing the equilibrium adsorption process of the RB5 (R2 = 0.9993). Overall, the applied models elucidated the influence of both physical and chemical interactions on the mechanism. Kinetic studies revealed that the adsorption of RB5 fit a pseudo-second-order kinetic model. The unique biochemical composition of the indigenous L. adecarboxylata biosorbent provided a high affinity for RB5, offering a sustainable, rapid, and economical solution for the treatment of dye-polluted water.

Description

Kocberber Kilic, Nur/0000-0003-2668-3789

Keywords

Biosorption, Isotherm, Kinetic Models, Leclercia Adecarboxylata, Reactive Black 5, Research Article

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Water Environment Research

Volume

97

Issue

6

Start Page

End Page

Collections

PlumX Metrics
Citations

CrossRef : 1

Scopus : 2

Captures

Mendeley Readers : 3

SCOPUS™ Citations

2

checked on Jan 24, 2026

Web of Science™ Citations

2

checked on Jan 24, 2026

Page Views

1

checked on Jan 24, 2026

Downloads

27

checked on Jan 24, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
8.6666667

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo