Adaptive neuro-fuzzy inference technique for estimation of light penetration in reservoirs

dc.authorscopusid7004369411
dc.authorscopusid6602782136
dc.authorscopusid18838670000
dc.authorscopusid18835473500
dc.authorwosidSoyupak, Selçuk/A-9965-2008
dc.authorwosidKARAER, FEZA/AAH-3984-2021
dc.contributor.authorSoyupak, Selcuk
dc.contributor.authorKaraer, Feza
dc.contributor.authorSenturk, Engin
dc.contributor.authorHekim, Huseyin
dc.date.accessioned2024-07-05T14:33:09Z
dc.date.available2024-07-05T14:33:09Z
dc.date.issued2007
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Fac Engn, Dept Civil Engn, TR-06836 Ankara, Turkey; Uludag Univ, Fac Engn & Architecture, Dept Environm Engn, Bursa, Turkey; State Hydraul Works Turkey, Bursa, Turkeyen_US
dc.description.abstractAn adaptive neuro-fuzzy inference technique has been adopted to estimate light levels in a reservoir. The data were collected randomly from Doganci Dam Reservoir over a number of years. The input data set is a matrix with vectors of time, depth, sampling location, and incident solar radiation. The output data set is a vector representing light measured at various depths. Randomization and logarithmic transformations have been applied as preprocessing. One-half of the data have been utilized for training; testing and validation steps utilized one-fourth each. An adaptive neuro-fuzzy inference system (ANFIS) has been built as a prediction model for light penetration. Very high correlation values between predictions and real values on light measurements with relatively low root mean square error values have been obtained for training, test, and validation data sets. Elimination of the overtraining problem was ensured by satisfying close root mean square error values for all sets.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/s10201-007-0204-6
dc.identifier.endpage112en_US
dc.identifier.issn1439-8621
dc.identifier.issn1439-863X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-34547943291
dc.identifier.scopusqualityQ2
dc.identifier.startpage103en_US
dc.identifier.urihttps://doi.org/10.1007/s10201-007-0204-6
dc.identifier.urihttps://hdl.handle.net/20.500.14411/893
dc.identifier.volume8en_US
dc.identifier.wosWOS:000248820400003
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringer Japan Kken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectreservoirsen_US
dc.subjectmodelingen_US
dc.subjectlight penetrationen_US
dc.subjectneuro-fuzzy inferenceen_US
dc.subjectANFISen_US
dc.titleAdaptive neuro-fuzzy inference technique for estimation of light penetration in reservoirsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections