Adaptive neuro-fuzzy inference technique for estimation of light penetration in reservoirs

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Japan Kk

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

An adaptive neuro-fuzzy inference technique has been adopted to estimate light levels in a reservoir. The data were collected randomly from Doganci Dam Reservoir over a number of years. The input data set is a matrix with vectors of time, depth, sampling location, and incident solar radiation. The output data set is a vector representing light measured at various depths. Randomization and logarithmic transformations have been applied as preprocessing. One-half of the data have been utilized for training; testing and validation steps utilized one-fourth each. An adaptive neuro-fuzzy inference system (ANFIS) has been built as a prediction model for light penetration. Very high correlation values between predictions and real values on light measurements with relatively low root mean square error values have been obtained for training, test, and validation data sets. Elimination of the overtraining problem was ensured by satisfying close root mean square error values for all sets.

Description

Keywords

reservoirs, modeling, light penetration, neuro-fuzzy inference, ANFIS

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q3

Scopus Q

Q2

Source

Volume

8

Issue

2

Start Page

103

End Page

112

Collections