A Novel Comparison of Shrinkage Methods Based on Multi Criteria Decision Making in Case of Multicollinearity

dc.authorscopusid 58590017600
dc.authorscopusid 36015912400
dc.contributor.author Kılıçoğlu,Ş.
dc.contributor.author Yerlikaya-Özkurt,F.
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:23:12Z
dc.date.available 2024-07-05T15:23:12Z
dc.date.issued 2024
dc.department Atılım University en_US
dc.department-temp Kılıçoğlu Ş., Graduate School of Natural and Applied Sciences, Atılım University, Ankara, Turkey; Yerlikaya-Özkurt F., Industrial Engineering Department, Atılım University, Ankara, Turkey en_US
dc.description.abstract Streszczenie. Data analysis is very important in many fields of science. The most preferred methods in data analysis is linear regression due to its simplicity to interpret and ease of application. One of the assumptions accepted while obtaining linear regression is that there is no correlation between the independent variables in the model which refers to absence of multicollinearity. As a result of multicollinearity, the variance of the parameter estimates will be high and this reduces the accuracy and reliability of the linear models. Shrinkage methods aim to handle the multicollinearity problem by minimizing the variance of the estimators in linear model. Ridge Regression, Lasso, and Elastic-Net methods are applied to different simulated data sets with different characteristics and also real world data sets. Based on performance results, the methods are compared according to multi-criteria decision making method named TOPSIS, and the order of preference is determined for each data set. © (2024), (American Institute of Mathematical Sciences). All rights reserved. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.3934/jimo.2024072
dc.identifier.endpage 3842 en_US
dc.identifier.issn 1547-5816
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-85200979192
dc.identifier.scopusquality Q3
dc.identifier.startpage 3816 en_US
dc.identifier.uri https://doi.org/10.3934/jimo.2024072
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:001234923200001
dc.identifier.wosquality Q4
dc.institutionauthor Kılıçoğlu, Şevval
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher American Institute of Mathematical Sciences en_US
dc.relation.ispartof Journal of Industrial and Management Optimization en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 3
dc.subject elastic net en_US
dc.subject lasso en_US
dc.subject multi criteria decision making en_US
dc.subject Multicollinearity en_US
dc.subject ridge regression en_US
dc.subject shrinkage methods en_US
dc.subject TOPSIS en_US
dc.title A Novel Comparison of Shrinkage Methods Based on Multi Criteria Decision Making in Case of Multicollinearity en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication dcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery dcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections