A NOVEL COMPARISON OF SHRINKAGE METHODS BASED ON MULTI CRITERIA DECISION MAKING IN CASE OF MULTICOLLINEARITY

dc.authorscopusid58590017600
dc.authorscopusid36015912400
dc.contributor.authorKılıçoğlu,Ş.
dc.contributor.authorYerlikaya-Özkurt,F.
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:23:12Z
dc.date.available2024-07-05T15:23:12Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-tempKılıçoğlu Ş., Graduate School of Natural and Applied Sciences, Atılım University, Ankara, Turkey; Yerlikaya-Özkurt F., Industrial Engineering Department, Atılım University, Ankara, Turkeyen_US
dc.description.abstractStreszczenie. Data analysis is very important in many fields of science. The most preferred methods in data analysis is linear regression due to its simplicity to interpret and ease of application. One of the assumptions accepted while obtaining linear regression is that there is no correlation between the independent variables in the model which refers to absence of multicollinearity. As a result of multicollinearity, the variance of the parameter estimates will be high and this reduces the accuracy and reliability of the linear models. Shrinkage methods aim to handle the multicollinearity problem by minimizing the variance of the estimators in linear model. Ridge Regression, Lasso, and Elastic-Net methods are applied to different simulated data sets with different characteristics and also real world data sets. Based on performance results, the methods are compared according to multi-criteria decision making method named TOPSIS, and the order of preference is determined for each data set. © (2024), (American Institute of Mathematical Sciences). All rights reserved.en_US
dc.identifier.citation0
dc.identifier.doi10.3934/jimo.2024072
dc.identifier.endpage3842en_US
dc.identifier.issn1547-5816
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85200979192
dc.identifier.scopusqualityQ3
dc.identifier.startpage3816en_US
dc.identifier.urihttps://doi.org/10.3934/jimo.2024072
dc.identifier.volume20en_US
dc.identifier.wosWOS:001234923200001
dc.identifier.wosqualityQ4
dc.institutionauthorKılıçoğlu, Şevval
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.ispartofJournal of Industrial and Management Optimizationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectelastic neten_US
dc.subjectlassoen_US
dc.subjectmulti criteria decision makingen_US
dc.subjectMulticollinearityen_US
dc.subjectridge regressionen_US
dc.subjectshrinkage methodsen_US
dc.subjectTOPSISen_US
dc.titleA NOVEL COMPARISON OF SHRINKAGE METHODS BASED ON MULTI CRITERIA DECISION MAKING IN CASE OF MULTICOLLINEARITYen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationdcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscoverydcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections