A Novel Comparison of Shrinkage Methods Based on Multi Criteria Decision Making in Case of Multicollinearity

dc.contributor.author Kılıçoğlu,Ş.
dc.contributor.author Yerlikaya-Özkurt,F.
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:23:12Z
dc.date.available 2024-07-05T15:23:12Z
dc.date.issued 2024
dc.description.abstract Streszczenie. Data analysis is very important in many fields of science. The most preferred methods in data analysis is linear regression due to its simplicity to interpret and ease of application. One of the assumptions accepted while obtaining linear regression is that there is no correlation between the independent variables in the model which refers to absence of multicollinearity. As a result of multicollinearity, the variance of the parameter estimates will be high and this reduces the accuracy and reliability of the linear models. Shrinkage methods aim to handle the multicollinearity problem by minimizing the variance of the estimators in linear model. Ridge Regression, Lasso, and Elastic-Net methods are applied to different simulated data sets with different characteristics and also real world data sets. Based on performance results, the methods are compared according to multi-criteria decision making method named TOPSIS, and the order of preference is determined for each data set. © (2024), (American Institute of Mathematical Sciences). All rights reserved. en_US
dc.identifier.doi 10.3934/jimo.2024072
dc.identifier.issn 1547-5816
dc.identifier.issn 1553-166X
dc.identifier.scopus 2-s2.0-85200979192
dc.identifier.uri https://doi.org/10.3934/jimo.2024072
dc.language.iso en en_US
dc.publisher American Institute of Mathematical Sciences en_US
dc.relation.ispartof Journal of Industrial and Management Optimization en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject elastic net en_US
dc.subject lasso en_US
dc.subject multi criteria decision making en_US
dc.subject Multicollinearity en_US
dc.subject ridge regression en_US
dc.subject shrinkage methods en_US
dc.subject TOPSIS en_US
dc.title A Novel Comparison of Shrinkage Methods Based on Multi Criteria Decision Making in Case of Multicollinearity en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kılıçoğlu, Şevval
gdc.author.institutional Yerlikaya Özkurt, Fatma
gdc.author.scopusid 58590017600
gdc.author.scopusid 36015912400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Kılıçoğlu Ş., Graduate School of Natural and Applied Sciences, Atılım University, Ankara, Turkey; Yerlikaya-Özkurt F., Industrial Engineering Department, Atılım University, Ankara, Turkey en_US
gdc.description.endpage 3842 en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 3816 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4399127626
gdc.identifier.wos WOS:001234923200001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6917428E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.9748303E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 2.476
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 3
relation.isAuthorOfPublication dcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery dcbb1a10-391e-4e05-b12c-9f2b5aafb11d
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections