An approach for performance prediction of saturated brushed permanent magnet\rdirect current (DC) motor from physical dimensions

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

An analytical approach for performance prediction of saturated brushed permanent magnet direct current\r(DC) motors is proposed in this paper. In case of a heavy saturation in the stator back core of electrical machines, some\rflux completes its path through the surrounding air, and the conventional equivalent circuit cannot be used anymore.\rThis issue has not been addressed in the literature. The importance of considering the effect of the flux penetrating\rthe surrounding air is shown in this paper using finite element simulations and experimental results, and an analytical\rapproach is proposed to consider this effect on magnet operating point determination and performance prediction of\rsaturated brushed permanent magnet DC motors. An analytical method is also presented to determine the boundary\rradius of the surrounding air for obtaining accurate results in finite element (FE) solutions and analytical calculations.\rAn analytical approach based on Carter’s coefficient is also proposed to calculate the effective length of the magnet when\rthe length of the magnet and rotor length are not the same. The accuracy of the proposed analytical model is illustrated\rusing finite element simulations and experimental results. With this accuracy, this analytical model is very suitable to\rbe used for reliable and quick mathematical design optimization.

Description

zeinali, reza/0000-0003-2660-4518

Keywords

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Q4

Scopus Q

Q3

Source

Turkish Journal of Electrical Engineering and Computer Sciences

Volume

30

Issue

1

Start Page

127

End Page

139