Distinguishing Intermediate and Novice Surgeons by Eye Movements

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Surgical skill-level assessment is key to collecting the required feedback and adapting the educational programs accordingly. Currently, these assessments for the minimal invasive surgery programs are primarily based on subjective methods, and there is no consensus on skill level classifications. One of the most detailed of these classifications categorize skill levels as beginner, novice, intermediate, sub-expert, and expert. To properly integrate skill assessment into minimal invasive surgical education programs and provide skill-based training alternatives, it is necessary to classify the skill levels in as detailed a way as possible and identify the differences between all skill levels in an objective manner. Yet, despite the existence of very encouraging results in the literature, most of the studies have been conducted to better understand the differences between novice and expert surgical skill levels leaving out the other crucial skill levels between them. Additionally, there are very limited studies by considering the eye-movement behaviors of surgical residents. To this end, the present study attempted to distinguish novice- and intermediate-level surgical residents based on their eye movements. The eye-movement data was recorded from 23 volunteer surgical residents while they were performing four computer-based simulated surgical tasks under different hand conditions. The data was analyzed using logistic regression to estimate the skill levels of both groups. The best results of the estimation revealing a 91.3% recognition rate of predicting novice and intermediate surgical residents on one scenario were selected from four under the dominant hand condition. These results show that the eye-movements can be potentially used to identify surgeons with intermediate and novice skills. However, the results also indicate that the order in which the scenarios are provided, and the design of the scenario, the tasks, and their appropriateness with the skill levels of the participants are all critical factors to be considered in improving the estimation ratio, and hence require thorough assessment for future research.

Description

Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; Cagiltay, Nergiz/0000-0003-0875-9276

Keywords

eye movement events, eye movement classification, eye tracking, surgical skill assessment, surgical training

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Q1

Scopus Q

Q1

Source

Volume

11

Issue

Start Page

End Page

Collections