Kılıç, Sadık Engin
Loading...
Name Variants
K.,Sadik Engin
Sadık Engin, Kılıç
Kılıç S.
S. E. Kılıç
Kılıç, Sadık Engin
S.E.Kılıç
Kiliç S.
S.,Kılıç
Kilic S.
K.,Sadık Engin
K., Sadik Engin
Kilic,S.E.
S. E. Kilic
K., Sadık Engin
Kılıç,S.E.
Sadik Engin, Kilic
Sadık Engin Kılıç
S., Kilic
Kilic, Sadik Engin
Kilic,Sadik Engin
S.E.Kilic
Kilic, S. Engin
Sadık Engin, Kılıç
Kılıç S.
S. E. Kılıç
Kılıç, Sadık Engin
S.E.Kılıç
Kiliç S.
S.,Kılıç
Kilic S.
K.,Sadık Engin
K., Sadik Engin
Kilic,S.E.
S. E. Kilic
K., Sadık Engin
Kılıç,S.E.
Sadik Engin, Kilic
Sadık Engin Kılıç
S., Kilic
Kilic, Sadik Engin
Kilic,Sadik Engin
S.E.Kilic
Kilic, S. Engin
Job Title
Profesör Doktor
Email Address
engin.kilic@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output
22
Articles
16
Citation Count
191
Supervised Theses
3
22 results
Scholarly Output Search Results
Now showing 1 - 10 of 22
Conference Object Citation Count: 0Partner selection in formation of virtual enterprises using fuzzy logic(SciTePress, 2015) Nikghadam,S.; Sadigh,B.L.; Ozbayoglu,A.M.; Unver,H.O.; Kilic,S.E.; Manufacturing EngineeringVirtual Enterprise (VE) is a temporary cooperation among independent enterprises to build up a dynamic collaboration framework for manufacturing. One of the most important steps to construct a successful VE is to select the most qualified partners to take role in the project. This paper is a survey of ranking the volunteer companies with respect to four evaluation criteria, proposed unit price, delivery time, quality and enterprises' past performance. Fuzzy logic method is proposed to deal with these four conflicting criteria, considered as input variables of the model. As each criterion is different in nature with the other criterion, various membership functions are used to fuzzify the input values. The next step is to construct the logical fuzzy rules combining the inputs to conclude the output. Mamdani's approach is adopted to evaluate the output in this Fuzzy Inference System. The result of the model is the partnership chance of each partner to participate in VE. A partner with highest partnership chance will be the winner of the negotiation. Implementation of this model to the illustrative example of a partner selection problem in virtual enterprise and comparing it with fuzzy-TOPSIS approach verifies the feasibility of the proposed approach and the computational results are satisfactory. Copyright © 2015 SCITEPRESS - Science and Technology Publications All rights reserve.Article Citation Count: 16A framework for energy reduction in manufacturing process chains (E-MPC) and a case study from the Turkish household appliance industry(Elsevier Sci Ltd, 2016) Uluer, Muhtar Ural; Unver, Hakki Ozgur; Gok, Gozde; Fescioglu-Unver, Nilgun; Kilic, Sadik Engin; Manufacturing EngineeringEnergy is a major input in the manufacturing sector. Its security and efficiency are of supreme importance to a nation's industrial activities. Energy consumption also has serious environmental impacts in terms of Greenhouse Gas (GHG) emissions. In order to use energy more efficiently, simply designing parts and planning manufacturing processes with an energy-aware mindset is insufficient; it is also necessary to model and assess the energy efficiency of a process chain from a holistic point of view. In this work, we propose an integrated energy reduction framework and the internal methods to implement it. Our framework builds on three pillars. Creating an energy profile of a process chain is the first step in characterizing a manufacturing system in terms of energy demand. Energy-aware part designs and process plans are based on ISO/STEP 10303 AP224 standards in order to estimate the embodied energy of a mechanical part. Finally, using discrete event simulation methods, the energy consumption of a process chain is assessed and reduction scenarios are generated based on design or operational alternatives. A data collection and analytics system visualizing measures and key performance indicators (KPIs) also must be implemented in order to measure real consumption values and track improvement results over time. The energy reduction in manufacturing process chains (E-MPC) framework is unique in that it provides a structured method which enables the embodied energy of a part to be estimated during early design stages and further enables the evaluation of design impacts on process chains, thereby recognizing the dynamic nature of systems. A pilot case study of the framework was implemented at the largest household appliance manufacturer in Turkey, Arcelik A.S. In order to evaluate its usefulness and validity, we performed a detailed implementation on a fully automated crankshaft manufacturing line in Arcelilc's refrigerator compressor plant. The results reveal that design improvements estimated gains would reach 2%, whereas operational improvements yield up to 10% energy savings per produced part. (C) 2015 Elsevier Ltd. All rights reserved.Conference Object Citation Count: 3Design of a Customer's Type Based Algorithm for Partner Selection Problem of Virtual Enterprise(Elsevier Science Bv, 2016) Nikghadam, Shahrzad; Ozbayoglu, Ahmet Murat; Unver, Hakki Ozgur; Kilic, Sadik Engin; Manufacturing EngineeringVirtual Enterprise (VE) is a temporary platform for individual enterprises to collaborate with each other, sharing their core competencies to fulfill a customer demand. In order to improve the customer satisfaction, the most successful VEs select their consortium's members based on customer's preferences. There is quite extensive literature in the field of partner selection in VE, each proposing a new approach to evaluate and select the most appropriate partners among pool of enterprises. However, none of the studies in literature recommend which partner selection methodology should be used in each project with a particular customer attitude. In this study an algorithm is proposed which classifies the customers into three categories; passive, standard and assertive. Three different approaches; Fuzzy Logic-FAHP TOPSIS and Goal programming are used for each customer type respectively. This classification is beneficial since the problem's characteristics; such as vagueness of data, change as the customer's attitude varies. The results certify that, adopting this algorithm not only helps the VE to select the most appropriate partners based on customer preferences, but also the model adapts itself to each customer's attitude. As a result, the overall system flexibility is significantly improved. (C) 2016 The Authors. Published by Elsevier B.V.Article Citation Count: 0Investigation of the Combined Effects of Ultrasonic Vibration-Assisted Machining and Minimum Quantity Lubrication on Al7075-T6(Hindawi Ltd, 2024) Namlu, Ramazan Hakki; Cetin, Baris; Lotfi, Bahram; Kilic, S. Engin; Mechanical Engineering; Department of Mechanical Engineering; Manufacturing EngineeringThe aluminum alloy Al7075-T6 finds extensive application in the aviation and automotive industries, where machining plays a pivotal role. Emerging techniques such as Ultrasonic Vibration-Assisted Machining (UVAM) and Minimum Quantity Lubrication (MQL) hold promise for enhancing machining efficiency. In this study, the combined use of UVAM and MQL for slot milling of Al7075-T6 was investigated. The results demonstrate that UVAM reduced cutting forces by an average of 10.87% in MQL and 8.31% in Conventional Cutting Fluid (CCF) conditions when compared to Conventional Machining (CM). In addition, UVAM yielded significantly improved surface finishes, characterized by an average reduction in surface roughness of 41.86% in MQL and 32.11% in CCF conditions relative to CM. Furthermore, surfaces subjected to UVAM exhibited fewer instances of burn marks and tool-induced markings, reduced chip splashing, and more uniform surface integrity compared to those manufactured with CM. Lastly, chips generated through UVAM exhibited distinct characteristics, notably shorter length, curvier shape, and a distinctive half-turn morphology when compared with the irregular chips produced through CM. In conclusion, our findings underscore the potential of UVAM in synergy with MQL to augment the machining of Al7075-T6 alloy, thereby yielding superior-quality machined components with enhanced operational efficiency.Conference Object Citation Count: 2Evaluation of partner companies based on fuzzy inference system for establishing virtual enterprise consortium(Springer Verlag, 2015) Nikghadam,S.; LotfiSadigh,B.; Ozbayoglu,A.M.; Unver,H.O.; Kilic,S.E.; Manufacturing EngineeringVirtual Enterprise (VE) is one of the growing trends in agile manufacturing concepts. Under this platform companies with different skills and core competences are cooperate with each other in order to accomplish a manufacturing goal. Success of VE, as a consortium, highly depends on the success of its partners. So it is very important to choose the most appropriate companies to enroll in VE. In this study a Fuzzy Inference System (FIS) based approach is developed to evaluate and select the potential enterprises. The evaluation is conducted based on four main criteria; unit price, delivery time, quality and past performance. These criteria are considered as inputs of FIS and specific membership functions are designed for each. By applying fuzzy rules the output of the model, partnership chance, is calculated. In the end, the trustworthy of the model is tested and verified by comparing it with fuzzy-TOPSIS technique providing a sample. © Springer International Publishing Switzerland 2015.Article Citation Count: 28Slot milling of titanium alloy with hexagonal boron nitride and minimum quantity lubrication and multi-objective process optimization for energy efficiency(Elsevier Sci Ltd, 2020) Osman, Khaled Ali; Yilmaz, Volkan; Unver, Hakki Ozgur; Seker, Ulvi; Kilic, Sadik Engin; Manufacturing EngineeringThe implementation of sustainable manufacturing techniques to make machining processes more eco-friendly is a challenging topic that has attracted significant attention from the industrial sector for many years. As one of the dominant manufacturing processes, machining can have a considerable impact in terms of ecology, society, and economics. In certain areas, this impact is a result of using certain cutting fluids, especially during the machining of difficult-to-cut alloys such as titanium, where a large amount of cutting fluid is wasted to ease the cutting process. In such scenarios, identifying suitable machining conditions to supply cutting fluids using eco-friendly techniques is currently a major focus of academic and industrial sector research. In this study, effects of minimum quantity lubrication with different concentrations of hexagonal boron nitride nanoparticles on the surface roughness and cutting force of slot-milled titanium alloy is investigated using analysis of variance and response surface methodology. The results reveal that all responses are sensitive to changes in the feed per tooth, cutting depth, and cutting fluid flow rate. The regression functions generated were combined with particle swarm optimization in order to improve energy-efficiency, as well. Possible sectorial scenarios were generated for wider industrial adoption. With this study, it was proven that utilizing minimum quantity lubrication with hexagonal boron nitride nanoparticles can reduce both cutting force and surface roughness, which makes it to be a promising alternative as a nanoparticle augmented minimum quantity lubrication method for machining titanium alloys. (C) 2020 Elsevier Ltd. All rights reserved.Article Citation Count: 8An ontology-based multi-agent virtual enterprise system (OMAVE): part 1: domain modelling and rule management(Taylor & Francis Ltd, 2017) Sadigh, Bahram Lotfi; Unver, Hakki Ozgur; Nikghadam, Shahrzad; Dogdu, Erdogan; Ozbayoglu, A. Murat; Kilic, S. Engin; Manufacturing EngineeringNew advancements in computers and information technologies have yielded novel ideas to create more effective virtual collaboration platforms for multiple enterprises. Virtual enterprise (VE) is a collaboration model between multiple independent business partners in a value chain and is particularly suited to small and medium-sized enterprises (SMEs). The most challenging problem in implementing VE systems is ineffcient and inFLexible data storage and management techniques for VE systems. In this research, an ontology-based multi-agent virtual enterprise (OMAVE) system is proposed to help SMEs shift from the classical trend of manufacturing part pieces to producing high-value-added, high-tech, innovative products. OMAVE targets improvement in the FLexibility of VE business processes in order to enhance integration with available enterprise resource planning (ERP) systems. The architecture of OMAVE supports the requisite FLexibility and enhances the reusability of the data and knowledge created in a VE system. In this article, a detailed description of system features along with the rule-based reasoning and decision support capabilities of OMAVE system are presented. To test and verify the functionality and operation of this system, a sample product was manufactured using OMAVE applications and tools with the contribution of three SMEs.Article Citation Count: 17A survey of partner selection methodologies for virtual enterprises and development of a goal programming-based approach(Springer London Ltd, 2016) Nikghadam, Shahrzad; Sadigh, Bahram Lotfi; Ozbayoglu, Ahmet Murat; Unver, Hakki Ozgur; Kilic, Sadik Engin; Manufacturing EngineeringA virtual enterprise (VE) is a platform that enables dynamic collaboration among manufacturers and service providers with complementary capabilities in order to enhance their market competitiveness. The performance of a VE as a system depends highly on the performance of its partner enterprises. Hence, choosing an appropriate methodology for evaluating and selecting partners is a crucial step toward creating a successful VE. In this paper, we begin by presenting an extensive review of articles that address the VE partner selection problem. To fill a significant research gap, we develop a new goal programming (GP)-based approach that can be applied in extreme bidding conditions such as tight delivery timelines for large demand volumes. In this technique, fuzzy analytic hierarchy process (F-AHP) is used to determine customer preferences for four main criteria: proposed unit price, on-time delivery reliability, enterprises' past performance, and service quality. These weights are then incorporated into the GP model to evaluate bidders based on customers' preferences and goals. We present a case study in which we implement the F-AHP-GP technique and verify the model's applicability, as it provides a more flexible platform for matching customers' preferences.Article Citation Count: 11A neural network model for the assessment of partners' performance in virtual enterprises(Springer London Ltd, 2007) Sari, Burak; Amaitik, Saleh; Kilic, S. Engin; Manufacturing EngineeringIn response to increasing international competition, enterprises have been investigating new ways of cooperating with each other to cope with today's unpredictable market behaviour. Advanced developments in information & communication technology (ICT) enabled reliable and fast cooperation to support real-time alliances. In this context, the virtual enterprise (VE) represents an appropriate cooperation alternative and competitive advantage for the enterprises. VE is a temporary network of independent companies or enterprises that can quickly bring together a set of core competencies to take advantage of market opportunity. In this emerging business model of VE, the key to enhancing the quality of decision making in the partner companies' performance evaluation function is to take advantage of the powerful computer-related concepts, tools and technique that have become available in the last few years. This paper attempts to introduce a neural network model, which is able to contribute to the extrapolation of the probable outcomes based on available pattern of events in a virtual enterprise. Quality, delivery and progress were selected as determinant factors effecting the performance assessment. Considering the features of partner performance assessment and neural network models, a back-propagation neural network that includes a two hidden layers was used to evaluate the partner performance.Article Citation Count: 76An intelligent process planning system for prismatic parts using STEP features(Springer London Ltd, 2007) Amaitik, Saleh M.; Kilic, S. Engin; Manufacturing EngineeringThis paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques ( neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.
- «
- 1 (current)
- 2
- 3
- »