1. Home
  2. Browse by Author

Browsing by Author "Tora, Hakan"

Filter results by typing the first few letters
Now showing 1 - 20 of 40
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    An Approach for Perceptual Similarity Detection Between Audios Independent of Genre Via Metadata Extraction and Correlation
    (Ieee, 2007) Komsu, Fatma; Tora, Hakan; Oeztoprak, Kasim; Tora, Hakan; Tora, Hakan; Airframe and Powerplant Maintenance; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    This study presents an approach for perceptual similarity detection between audios independent of genre. The study is formed of three phases; signal pre-processing as the first phase, metadata extraction via various perceptually compatible features as the second phase, and correlation methodology for similarity identification as the third phase. The performance and relative importance of the selected features for perceptual similarity analysis are presented, as testing results. Moreover, relative importance of preprocessing is introduced. Using the proposed methodology, perceptual similarity detection between genre independent audios is achieved with a 96.85% performance. Contribution highly lies on the independency of genre.
  • Loading...
    Thumbnail Image
    Master Thesis
    Araba plaka tanıma
    (2009) Bora, Kayhan; Tora, Hakan; Çağıltay, Nergiz Ercil; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Hızlı gelisen teknoloji ile beraber ülkelerdeki araç sayısı artmıstır. Araçsayısının artısına paralel olarak araçların tanınması gereksinimi de artmıstır.Güvenlik, otomatik geçis sistemleri, otoyollarda hız tespiti, ısık ihlali gibidurumlarda araçların tanınması ihtiyacı doğmustur. Araç plaka tanıma sistemi üç anakonudan olusmaktadır. Sayısal bir görüntüden plakanın bulunması, bulunan plakagörüntüsünden karakterlerin ayrıstırılması, ayrıstırılan karakterin tanınmasıdır. Butez çalısmasında ikinci ve üçüncü konular üzerine bir çalısma yapılmıstır. Öncekiyapılan çalısmalar incelendiğinde daha çok yapay sinir ağları ile karakter tanınmayaçalısıldığı görülmüstür. Bu çalısmada yapay sinir ağları veya karmasık matematikselislemler yerine insan gözü ile karakterin nasıl algılandığına dikkat edilmistir. Plakagörüntüsü gri seviyeye indirgenmis, esik değeri hesaplanmıs ve ikili sistemeçevrilmistir. Plaka görüntüsü ikili sisteme çevrildikten sonra dikey ve yataydoğrultularda taranarak karakterlerin sınırları bulunmustur. Bulunan karakterlersoldan sağa, sağdan sola, yukarıdan asağıya, asağıdan yukarı taranarak her birkarakter için özellik sınıfları olusturulmustur. Daha önceden karakterler içinhazırlanmıs olan özellik sınıfları veritabanı ile karakterin özellik sınıfıkarsılastırılmıstır. Karakterin diğer karakterlere benzeme oranı kullanıcıyagösterilmistir. Çalısma esnasında T.C. araç plakaları kullanılmıstır.Anahtar Kelimeler : Araba Plakası Tanıma
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Arnold Cat Dönüsümünün Genelleştirilmesi ve Görüntü Steganografisinde Kesir Tabanlı Gömme
    (2019) Buker, Mohamed M.m.; Tora, Hakan; Gökçay, Erhan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Veri iletişiminin hızlı gelişimi ve ağlar aracılığıyla iletilen bilgilerin artması, değiş tokuş edilen bilgileri korumanın yeni yollarını bulmayı çok önemli kılmaktadır. Şifreleme günümüzde bu alanda en yaygın kullanılan yöntemlerden biridir. Steganografi, iletilen bilgilerin yalnızca şifrelenmekten ziyade herkes tarafından görünmez olduğu araştırma alanıdır. Steganografinin arkasındaki fikir bilginin varlığını gizlemektir. Bir üçüncü taraf bilgi olduğunu bildiği sürece, şifreli olsun ya da olmasın, bilgi risk altında olacaktır. Bu tezde, iki güvenlik seviyeli bir steganografik model sunuyoruz. İlk olarak, gizli görüntü Genelleştirilmiş Arnold CAT Haritamız (ACM) kullanılarak karıştırılmıştır. Daha sonra, karıştırılmış görüntü, dönüşüm bölgesinde hem Ayrık Dalgacık Dönüşümü (DWT) hem de Kaldırılmış Dalgacık Dönüşümü (LWT) ile Kesir Tabanlı Gömme Tekniğimizi (FBE) kullanarak başka bir görüntünün içine gömülür. Modelimizin verimliliği, referans renkli görüntüler üzerinde test edildi. Tepe Sinyal Gürültü Oranı (PSNR), Ortalama Kare Hatası (MSE), Yapısal Benzerlik (SSIM) ve Korelasyon değerleri hesaplandı. Sonuçlar, Genelleştirilmiş ACM'mizin, ACM'nin standart ve değiştirilmiş versiyonlarına kıyasla daha sağlam olduğunu göstermektedir. Aynı zamanda, yeni FBE tekniğimizin sonuçları, PSNR ve MSE değerleri ile ilgili diğer tekniklerden daha iyi performans göstermektedir.
  • Loading...
    Thumbnail Image
    Master Thesis
    Avuç İçi Tanımlaması
    (2018) Jebrıel, Belal Alı Mesbah; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Bu tez, standart bir veritabanı ve bir temizleyici aracılığıyla avuç izi tanımlanmasının uygunluğunu araştırmaktadır. Bu çalışma, sol el ve sağ el görüntüleri içeren veritabanları CASIA ve IIT için iki öznitelik kümesi kullanmaktadır. Yerel ikili örüntü (YİÖ) ve yönlü gradyan histogram (YGH) öznitelikleri, MATLAB tarafından görüntülerden elde edilmiştir. Eğitim ve test setleri bu özelliklerden oluşturuldu. Çok katmanlı katmanlı bir sinir ağı ve lineer ve kuadratik kernel kullanan destek vektör makineleri (DVM), seçilen veritabanlarında eğitilmiş ve test edilmiştir. Seçilen özellikler deneysel olarak birbirleriyle karşılaştırılmıştır. Her iki sınıflandırıcı için YGH'de daha iyi sonuçlar elde edilmiştir. Ayrıca, sınıflandırıcıların performansı da değerlendirilmiştir. Sinir ağın, her iki veri setinin YİÖ öznitelikleri için SVM'den daha iyi sonuçlar verdiği gözlenmiştir. Ancak, YGH özellikleri için birbirlerine göre çok fazla avantajları yoktur. Anahtar Kelimeler: Avuç izi tanımlama, yerel ikili örüntü (YİÖ), yönlü gradyan histogramı (YGH), sinir ağları, destek vektör makinesi (DVM).
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Coğrafi Bilgi Sistemi (cbs) Modellemesi Kullanılarak Karasu Kıyı Alanı için Deniz Seviyesi Yükselmesinin (dsy) Etki Değerlendirmesi
    (2018) Elıawa, Ali Ibrahım Alı; Tora, Hakan; Genç, Aslı Numanoğlu; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Küresel ısınmaya bağlı olarak Deniz Seviyesi Yükselmesi (DSY), kıyı bölgeleri için önemli bir konu haline gelmektedir. Bu tez çalışmasında, Türkiye'de Karasu etrafındaki kıyı bölgelerinin zaafiyetini (kırılganlık) değerlendirmek için kapsamlı bir analiz yapılmıştır. Deniz seviyesindeki 1 m, 2m, ve 3 m 'lik deniz seviyesi yükselmesi senaryo tahminlerine dayanarak, su taşkını seviyeleri Sayısal Yükseklik Modeli (SYD) kullanılarak görselleştirilmiştir. Sekiz taraflı kural algoritması, yüksek çözünürlüklü bir SYD verisi kullanılarak Coğrafi Bilgi Sistemi (CBS) aracılığıyla uygulanmıştır. SYD verileri, Türkiye Ulusal Arazi Etüdü tarafından yayınlanan 11 adet 1: 5000 ölçekli topografik haritalar kullanılarak üretilmiştir. CBS tabanlı su baskını haritalarının sonuçları sırasıyla 1 m, 2m, ve 3 m 'lik deniz seviyesi yükselme senaryoları için toplam arazinin % 1.43'ünün veya 0.79 km2'sinin, % 6.16'sının veya 3.4 km2'sinin ve % 30.08'inin veya 16.6 km2'sinin su altında kaldığını göstermektedir. Risk haritaları, 1 m'lik senorya için su birikintileri ve plaj alanlarının 3 m'lik senaryo için ise kentsel alanlar, su kütleleri ve plaj alanlarının daha yüksek risk taşıdığını göstermektedir. Zaafiyet (kırlganlık) verilileri ile birleştirilmiş afet haritasından, Karasu bölgesinin batı ve doğusundaki nehir ağzı bölgelerinin orta dereceli bir zaafiyeti (kırlganlık) olduğu, kıyı bölgelerinin iç kesiminin zayıflığının ise düşük olduğu görülmektedir. Bu sonuçlar, arazi kullanım politikalarını ve planlamasını geliştirme yönünde karar vericilere Karasu bölgesi için temel değerlendirme verileri sağlamaktadır.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 8
    Comparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecasting
    (Gazi Univ, 2021) Bulut, Mehmet; Tora, Hakan; Buaisha, Dr.magdi; Airframe and Powerplant Maintenance; Electrical-Electronics Engineering; 06. School Of Engineering; 13. School of Civil Aviation (4-Year); Avionics; 01. Atılım University
    In the world, electric power is the highest need for high prosperity and comfortable living standards. The security of energy supply is an essential concept in national energy management. Therefore, ensuring the security of electricity supply requires accurate estimates of electricity demand. The share of electricity generation from renewables is significantly growing in the world. This kind of energy types are dependent on weather conditions as the wind and solar energies. There are two vital requirements to locate and measure specific systems to utilize wind power: modelling and forecasting of the wind velocity. To this end, using only 4 years of measured meteorological data, the present research attempts to estimate the related speed of wind within the Libyan Mediterranean coast with the help of ANN (artificial neural networking) with three different learning algorithms, which are Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient. Conclusions reached in this study show that wind speed can be estimated within acceptable limits using a limited set of meteorological data. In the results obtained, it was seen that the SCG algorithm gave better results in tests in this study with less data.
  • Loading...
    Thumbnail Image
    Master Thesis
    Derin Çevresel Sinir Ağını Kullanarak Mide Kanser Sınıflandırması
    (2020) Jebur, Saıf Salam; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Bu tezde, önceden eğitilmiş birkaç CNN ve CNN yapımız endoskopik görüntülerde erken mide kanserinin otomatik olarak tespit edilmesine sunulmuştur. İlk aşamada, iki tip normal ve görüntü veri kümelerinin kanseri kullanılarak yapılan transfer öğrenimi, MATLAB 2018 kullanılarak mide kanseri tespiti için önceden eğitilmiş ağlar gerçekleştirildi. Daha sonra elde edilen sonuçlar birbirleriyle karşılaştırıldı ve ayrıntılı olarak tartışıldı. İkinci aşamada, CNN kullanılarak önerilen yeni yapı. Önerilen yapı SoftMax sınıflandırıcılı 8 katmandan oluşur. Son katmanda SoftMax tarafından sınıflandırılan evrişimsel katmanlarla çıkarılan yüksek seviye özellikler. Önerilen ağ 99.88% sundu ve bu da önceden eğitilmiş birkaç ağla karşılaştırıldığında yüksek sonuçtur. Ayrıca, önerilen ağ, çeşitli transfer öğrenme teknikleriyle karşılaştırıldığında dikkate değer bir yürütme süresi sundu.
  • Loading...
    Thumbnail Image
    Conference Object
    Design and Implementation of an Expressive Talking Mobile Robot: Toztorus
    (Ieee, 2018) Tozan, Ozalp; Tora, Hakan; Uslu, Baran; Unal, Bulcnt; Ceylan, Ece; Computer Engineering; Airframe and Powerplant Maintenance; 06. School Of Engineering; 13. School of Civil Aviation (4-Year); 01. Atılım University
    This paper is about a brand new robot and all its development stages from the design to the show time. As an undergraduate research project (the LAP program at Atilim University), the robot TozTorUs is the outcome of the dense efforts of a team. With the sensors equipped, it navigates autonomously in the environment in which it is located by avoiding the obstacles. It can understand your questions and answer them using Google's speech technologies. Although it is not a humanoid robot, with eyes and mouth simulator LED displays, it is as friendly as a human. We can also control TozTorUs using a mobile phone. Apart from these, it is able to adjust its height with respect to the visitor's, thus allowing it to make an eye contact with the person. Although TozTorUs is designed for welcoming, it may also be employed for consulting, security and elderly assistance.
  • Loading...
    Thumbnail Image
    Master Thesis
    Doku ve Şekil Bazlı Özellikler Kullanarak Yüz İfadesi Tanımlama
    (2016) Gül, Nuray; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Son zamanlarda, yüz ifadesi tanıma sistemleri (YİT), insan-makine etkileşimi uygulamaları (İME) için önemli bir role sahip olmuştur. Mevcut olan birçok sistemde, bir his tanımlanırken ya tüm yüze ait özellikler ya da yüzün bazı bölgelerine ait özellikler birleştirilerek kullanılmıştır. Bu çalışma ise her duygu tanımlanırken sadece bir uygun bölgenin kullanılmasını önermektedir ve böylece bu bölgelerin ayrı ayrı hisler üzerindeki etkilerinin ne olduğunu göstermeyi amaçlamaktadır. Sunulan tasarımda, Şaşkın ve Mutlu hislerinin ağız bölgesinin şekil özellikleri kullanılarak, diğer taraftan Korku, Öfke ve İğrenme hislerinin göz bölgesinin doku özellikleri kullanılarak tanımlanması hedeflenmiştir. Bu sebeple Fourier Tanımlayıcıları (FT) ve Yerel İkili Örüntüler (YİÖ) özellik vectörleri olarak çıkarılmış ve bu özellikler Yapay Sinir Ağları (YSA) kullanılarak sınıflandırılmıştır. Sistem, genişletilmiş Cohn-Kanade Veritabanı (CK+) üzerinde eğitilmiş ve tüm sistem için yaklaşık %88,9 başarım oranı elde edilmiştir.
  • Loading...
    Thumbnail Image
    Conference Object
    Effect of Secret Image Transformation on the Steganography Process
    (Ieee, 2017) Buker, Mohamed; Tora, Hakan; Gokcay, Erhan; Software Engineering; Airframe and Powerplant Maintenance; 06. School Of Engineering; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Steganography is the art of hiding information in something else. It is favorable over encryption because encryption only hides the meaning of the information; whereas steganography hides the existence of the information. The existence of a hidden image decreases Peak Signal to Noise Ratio (PSNR) and increases Mean Square Error (MSE) values of the stego image. We propose an approach to improve PSNR and MSE values in stego images. In this method a transformation is applied to the secret image, concealed within another image, before embedding into the cover image. The effect of the transformation is tested with Least Significant Bit (LSB) insertion and Discrete Cosine Transformation (DCT) techniques. MSE and PSNR are calculated for both techniques with and without transformation. Results show a better MSE and PSNR values when a transformation is applied for LSB technique but no significant difference was shown in DCT technique.
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    El Yazısı Rakam Tanıma için Yapay Sinir Ağları Tabanlı Öznitelik Çıkarma
    (2017) Pirim, Mine Altınay Günler; Tora, Hakan; Öztoprak, Kasım; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Bu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.
  • Loading...
    Thumbnail Image
    Master Thesis
    Frekans Alanında Görüntü Sınıflandırma için Konvolüsyonel Sinir Ağlarının Uygulanması
    (2024) Dağı, Göktuğ Erdem; Gökçay, Erhan; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Bu tezde, Evrişimsel Sinir Ağları (CNN'ler) son yıllarda çeşitli görüntü işleme ve bilgisayarlı görme görevlerinde dikkate değer başarılar elde etmiştir. Geleneksel CNN'ler doğrudan uzaysal alan görüntüleri üzerinde çalışır. Bununla birlikte, Hızlı Fourier Dönüşümü (FFT) yoluyla elde edilen görüntülerin frekans alanı gösterimi, piksel değerlerinin ilişkisizleştirilmesi ve hesaplama karmaşıklığında potansiyel azalma gibi benzersiz avantajlar sunar. Bu tez, görüntü sınıflandırmasını ve tanıma doğruluğunu artırmak için FFT ile dönüştürülmüş görüntülerin CNN algoritmalarına girdi olarak kullanılmasının etkilerini araştırmayı amaçlamaktadır. Araştırma, FFT'nin teorik temellerinin ve özelliklerinin kapsamlı bir incelemesiyle başlıyor. Daha sonra CNN'ler için ön işleme ardışık düzenlerinde FFT'nin entegrasyonunu araştırıyor. Giriş görüntülerini uzamsal alandan frekans alanına dönüştürerek, CNN'lerin en önemli frekans bileşenlerine odaklanarak daha verimli öğrenebileceğini, dolayısıyla yakınsama oranlarını ve genel performansı potansiyel olarak iyileştirebileceğini varsayıyoruz. Bunun etkinliğini değerlendirmek için CIFAR-10 (Kanada İleri Araştırma Enstitüsü), MNIST (Modifiye Ulusal Standartlar ve Teknoloji Enstitüsü)-Digits ve MNIST-Fashion dahil olmak üzere çeşitli kıyaslama veri setleri kullanılarak deneyler gerçekleştirildi. yaklaşmak. FFT ile dönüştürülmüş görüntüler çeşitli CNN mimarilerine beslendi ve sonuçlar, geleneksel uzaysal alan girdileri kullanılarak elde edilenlerle karşılaştırıldı. Sınıflandırma doğruluğu, eğitim süresi ve hesaplamalı kaynak kullanımı gibi ölçümler titizlikle analiz edildi. Sonuçlar, FFT tabanlı ön işlemenin, özellikle veri kümelerinin yüksek frekanslı gürültü veya gereksiz bilgi içerdiği senaryolarda, sınıflandırma doğruluğunda iyileştirmelere yol açabileceğini göstermektedir. Ancak faydaların farklı veri kümeleri ve ağ mimarileri arasında farklılık göstermesi, FFT ön işlemenin etkililiğinin bağlama bağlı olabileceğini düşündürmektedir. Sonuç olarak bu tez, FFT ön işlemesinin CNN iş akışlarına dahil edilmesinin görüntü işleme görevlerini geliştirme konusunda umut vaat ettiğini göstermektedir. Bulgular, hem uzaysal hem de frekans alanı bilgisinden yararlanan hibrit modellerin geliştirilmesi ve FFT tabanlı tekniklerin diğer sinir ağı türlerine ve makine öğrenimi algoritmalarına uygulanması da dahil olmak üzere gelecekteki araştırmalar için yollar önermektedir. Bu çalışma, bilgisayarlı görme alanını geliştirmek için frekans alanı analizinin derin öğrenme metodolojileriyle nasıl sinerjik olarak entegre edilebileceğinin daha geniş bir şekilde anlaşılmasına katkıda bulunmaktadır.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 12
    Citation - Scopus: 19
    A Generalized Arnold's Cat Map Transformation for Image Scrambling
    (Springer, 2022) Tora, Hakan; Gokcay, Erhan; Turan, Mehmet; Buker, Mohamed; Mathematics; Software Engineering; Airframe and Powerplant Maintenance; 02. School of Arts and Sciences; 06. School Of Engineering; 13. School of Civil Aviation (4-Year); 01. Atılım University
    This study presents a new approach to generate the transformation matrix for Arnold's Cat Map (ACM). Matrices of standard and modified ACM are well known by many users. Since the structure of the possible matrices is known, one can easily select one of them and use it to recover the image with several trials. However, the proposed method generates a larger set of transform matrices. Thus, one will have difficulty in estimating the transform matrix used for scrambling. There is no fixed structure for our matrix as in standard or modified ACM, making it much harder for the transform matrix to be discovered. It is possible to use different type, order and number of operations to generate the transform matrix. The quality of the shuffling process and the strength against brute-force attacks of the proposed method is tested on several benchmark images.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 8
    Hand Gesture Classification Using Inertial Based Sensors Via a Neural Network
    (Ieee, 2017) Akan, Erhan; Tora, Hakan; Uslu, Baran; Airframe and Powerplant Maintenance; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 13. School of Civil Aviation (4-Year); 01. Atılım University
    In this study, a mobile phone equipped with four types of sensors namely, accelerometer, gyroscope, magnetometer and orientation, is used for gesture classification. Without feature selection, the raw data from the sensor outputs are processed and fed into a Multi-Layer Perceptron classifier for recognition. The user independent, single user dependent and multiple user dependent cases are all examined. Accuracy values of 91.66% for single user dependent case, 87.48% for multiple user dependent case and 60% for the user independent case are obtained. In addition, performance of each sensor is assessed separately and the highest performance is achieved with the orientation sensor.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines
    (Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, Hakan; Electrical-Electronics Engineering; Airframe and Powerplant Maintenance; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 06. School Of Engineering; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Automatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.
  • Loading...
    Thumbnail Image
    Conference Object
    Higher Order Statistical Analysis of Turkish Phones
    (Ieee, 2014) Tora, Hakan; Uslu, Baran; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    In this study, histograms of Turkish phones were examined using higher order cumulants. As is known, phones constituting a language, are composed of letters as vowels and consonants. These letters can also be grouped as voiced and unvoiced phones. It is observed that unvoiced letters show a Gaussian-like distribution and result in small values of skewness and kurtosis. On the other hand, vowels and voiced consonants lead to a non-Gaussian distribution. Voiced and unvoiced phones are related with their skewness and kurtosis values. It is empirically shown that higher order cumulants are likely to be a feature in describing Turkish phones.
  • Loading...
    Thumbnail Image
    Master Thesis
    Hoparlör Bağımsız İzolasyonlu Rakam Tanıma
    (2020) Hamıd, Mohammed Saeed; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Çeşitli konuşma sinyali işleme uygulamalarında VAD, bir ses akışını konuşma etkinliği ve konuşmanın olmadığı zaman aralıklarını içeren zaman aralıklarına bölmek için önemli bir karakter sunar. Bu araştırmada, izole kelime tanıma ile ilgili yeni bir yaklaşım sunduk. İlk aşamada, ses etkinliği algılama (VAD) problem kırma penceresi, Bohman işlevi ve Bartlett-Hann işlevi için üç işlev uygulanmıştır. Hem Bohman fonksiyonu hem de Bartlett-Hann fonksiyonu VAD problemi için önceki çalışmalarda uygulanmamıştır. Öte yandan, perde, MFCC'ler ve enerji, özellik çıkarma teknikleri olarak uygulanır ve bu iki yöntemin yeni yaklaşımlar olduğu SOFTMAX ile birleştirilir. Pitch tabanlı SOFTMAX, SOFTMAX'a bağlanan ve yedi kelimeye göre sınıflandırılan ve% 85 doğrulukla özelliklerle çıkarılan olağanüstü sonuçlar sundu. Ayrıca enerji, özellik çıkarma ve SOFTMAX'a bağlanan bu fonksiyonun çıktısı olarak da uygulanır. Bu çerçeve, yalnızca kullanıcının giriş verilerini kolayca değiştirdiği çeşitli yalıtılmış kelime tanıma işlemlerine kolayca uygulanabilir. Bu çalışmadaki ana katkı, SOFTMAX'ı çeşitli özellik çıkarma teknikleriyle birleştirmiştir. SOFTMAX, (0,1) arasındaki etiketlere girdi özelliklerini analiz eden ve sınıflandırma veya regresyon sorunları için son katman fonksiyonu olarak çeşitli derin öğrenme tekniklerinde kullanılan trend olasılık fonksiyonudur. Elde edilen sonuçlar, özellik çıkarma için uygulanan sesli sinyal işleme teknikleri ile birleştirilmiş çeşitli makine öğrenme ve derin öğrenme teknikleri uygulanarak bu alanda sunulan çeşitli çalışmalarla karşılaştırılmıştır.
  • Loading...
    Thumbnail Image
    Article
    Implementation of Turkish Text-To Synthesis on a Voice Synthesizer Card With Prosodic Features
    (2017) Tora, Hakan; Uslu, İbrahim Baran; Karamehmet, Timur; Department of Electrical & Electronics Engineering; Airframe and Powerplant Maintenance; 15. Graduate School of Natural and Applied Sciences; 13. School of Civil Aviation (4-Year); 01. Atılım University
    This study is on hardware implementation of the Turkish text-to-speech (TTS) synthesis with a voice synthesizer card. Here, a fully functional TTS system, capable of synthesizing every Turkish text, including abbreviations, numbers, etc. is designed and implemented. The system is additionally enriched by applying some prosodic attributes for more intelligible and natural speech production. A set of rules required for proper pronunciation and stress patterns are precisely defined in a lexicon utilized for synthesizing Turkish speech. Performance of the developed system is assessed by the Mean Opinion Score (MOS) test. An average score of 3.29 out of 5 is achieved.It indicates that the proposed synthesizer can be successfully integrated to many practical Turkish TTS applications.
  • Loading...
    Thumbnail Image
    Master Thesis
    İşaret Dili Çevirmen Sistemi Tasarımı ve Uygulaması
    (2021) Tameemı, Ahmed Hashım Hamza; Tora, Hakan; Airframe and Powerplant Maintenance; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Sağlıklı ve sağır insanlar arasında yorumlama stratejileri tasarlamak için çok sayıda çaba sarf edilmiştir. Bu sistemlerin en önemlilerinden biri İnsan-Bilgisayar-Etkileşim (HCI) sistemleri olarak adlandırılan sistemlerdir. Bu alanda son yıllarda birçok işaret dili simülasyon çalışması geliştirilmektedir. Bu çabalar en fazla İşaret Dili'ni İngilizce konuşma ve metne, ayeti ise İngilizceye dönüştürmek için çalışıldı. Genellikle sağlıklı kişilerle Arap sağırları arasında minimum etkileşim vardır. Bu nedenle, normal kişiler ve Arap sağır topluluğu arasında daha iyi bir iletişim sağlamak için ArSL'yi Arapça konuşmaya veya metne çevirebilen bir dönüştürme sistemi tasarlamak çok önemlidir. Bu tezde, Konuşmadan İşaret diline çeviri sistemi yapılacaktır; hedef, Arap harflerinin konuşma sinyallerini standart Arap işaret diline çevirebilen bir çevirmen şeması tasarlamaktır. Bu devre, sağırlar ve normal insanlar arasındaki iletişim gibi çok sayıda uygulama için kullanılabilecek insan dostu bir program şemasını gerçekleştirmek için kullanılabilir. Sistem tasarım gereksinimlerini karşılamak için, veri toplama için konuşma sinyallerinin kaydedilmesi, ön işlemeden sonra özellik çıkarımı ve tanıma son adımı dahil olmak üzere çeşitli aşamalar gerçekleştirilmiştir. Daha sonra sistem, konuşulan harfin tersi olan parmak hareketlerinin görüntüsünü göstermek için çevirmen yapısına tanıma faktörlerini sağlar. Bu çalışmada Örüntü Tanıma Sinir Ağı (PRNN) kullanılmıştır. Girdi örneklerini istenen sınıflara ayırma yeteneğine sahip ileri beslemeli bir ağdır. Ağ, toplam 28 ana Arap harfinin her harfi için 20 örnek olmak üzere 560 eğitim örneği ile geri yayılım algoritması ile eğitilmiştir. Ardından, PRNN modelinin eşleşen çıktı etiketlerini ne kadar uygun tahmin ettiğini görmek için eğitilen model sırasıyla 140 ve 140 veri seti ile doğrulandı ve test edildi. Ağ, 28 sınıfın (harflerin) tamamı için başarıyla eğitilmiştir. Tanıma, %98'e varan mükemmel bir teşhis oranıyla sağlandı.
  • Loading...
    Thumbnail Image
    Master Thesis
    Işık Mikroskobu Kullanarak Hücre Sayımı için Alternatif Bir Görüntü İşleme Yaklaşımı
    (2011) Özkan, Akın; Tora, Hakan; İşgör, S. Belgin; Airframe and Powerplant Maintenance; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 13. School of Civil Aviation (4-Year); 01. Atılım University
    Hücre sayımı ve bu hücrelerin sınıflandırılması için kullanılan yöntemler mikro biyoloji ve hücre biyolojisi alanında önemli bir yer tutmaktadır. En temel sayma mikroskop aracılığıyla Hemositometre kullanılarak insan tarafından yapılır. Bu süreçte hücre sayısı ve canlılığını belirlemek için kullanılan en ekonomik ve en yaygın teknik boya dışlama yöntemidir. Bu çalışmada, hücre canlı-ölü ayrımı yapabilen yeni bir görüntü tabanlı hücre sayımı yaklaşımı (NIBA-C) önerilmiştir. Önerilen yöntemin başarısını değerlendirmek için aynı görüntüler, yöntem ile elde edilen değerler klasik boya dışlama yöntemi ile elde edilen sonuçlar ile karşılaştırılmıştır. Yöntemi segmentasyon ve ardından görüntülerin sınıflandırılması oluşturur. Segmentasyon aşamasında Hough Dönüşümü kullanılmıştır. Yapay Sinir Ağları hücre-hücre olmayan ve canlı-ölü hücre görüntü sınıflandırmasında kullanılmıştır.Bu çalışmada; önerilen yöntem NIBA-C %70 in üzerinde yerbulma ve %50 üzerinde canlı ölü ayrımı yapabilme yetenegi sergilemiştir.
  • «
  • 1 (current)
  • 2
  • »