Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Entities
Browse GCRIS
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Terlemezoglu, M."

Filter results by typing the first few letters
Now showing 1 - 20 of 22
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Construction of Self-Assembled Vertical Nanoflakes on Cztsse Thin Films
    (Iop Publishing Ltd, 2019) Terlemezoglu, M.; Surucu, O. Bayrakli; Colakoglu, T.; Abak, M. K.; Gullu, H. H.; Ercelebi, C.; Parlak, M.
    Cu2ZnSn(S, Se)(4) (CZTSSe) is a promising alternative absorber material to achieve high power conversion efficiencies, besides its property of involving low-cost and earth-abundant elements when compared to Cu(In, Ga) Se-2 (CIGS) and cadmium telluride (CdTe), to be used in solar cell technology. In this study, a novel fabrication technique was developed by utilizing RF sputtering deposition of CZTSSe thin films having a surface decorated with self-assembled nanoflakes. The formation of nanoflakes was investigated by detailed spectroscopic method of analysis in the effect of each stacked layer deposition in an optimized sequence and the size of nanoflakes by an accurate control of sputtering process including film thickness. Moreover, the effects of substrate temperature on the formation of nanoflakes on the film surface were discussed at a fixed deposition route. One of the main advantages arising from the film surface with self-assembled nanoflakes is the efficient light trapping which decreases the surface reflectance. As a result of the detailed production and characterization studies, it was observed that there was a possibility of repeatable and controllable fabrication sequence for the preparation of CZTSSe thin films with self-textured surfaces yielding low surface reflectance.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Cztsse Thin Films Fabricated by Single Step Deposition for Superstrate Solar Cell Applications
    (Springer, 2019) Terlemezoglu, M.; Surucu, O. Bayrakli; Dogru, C.; Gullu, H. H.; Ciftpinar, E. H.; Ercelebi, C.; Parlak, M.
    The focus of this study is the characterization of Cu2ZnSn(S,Se)(4) (CZTSSe) thin films and fabrication of CZTSSe solar cell in superstrate configuration. In this work, superstrate-type configuration of glass/ITO/CdS/CZTSSe/Au was entirely fabricated by totally vacuum-based process. CZTSSe absorber layers were grown by RF magnetron sputtering technique using stacked layer procedure. SnS, CuSe and ZnSe solid targets were used as precursors and no additional step like the selenization process was applied. The structural and morphological properties of deposited CZTSSe layers were analyzed using X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. The optical and electrical properties of the CZTSSe thin films were investigated by UV-Vis spectroscopy, Hall-Effect and photoconductivity measurements. In addition, the device performance of the fabricated superstrate solar cell was examined.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 25
    Citation - Scopus: 26
    Determination of Current Transport Characteristics in Au-cu/Cuo Schottky Diodes
    (Elsevier, 2019) Surucu, O. Bayrakli; Gullu, H. H.; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, the material properties of CuO thin films fabricated by sputtering technique and electrical properties of CuO/n-Si structure were reported. Temperature-dependent current-voltage (I-V) measurement was carried out to determine the detail electrical characteristics of this structure. The anomaly in thermionic emission (TE) model related to barrier height inhomogeneity at the interface was obtained from the forward bias I-V analysis. The current transport mechanism at the junction was determined under the assumption of TE with Gaussian distribution of barrier height. In this analysis, standard deviation and mean zero bias barrier height were evaluated as 0.176 and 1.48 eV, respectively. Depending on the change in the diode parameters with temperature, Richardson constant was recalculated as 110.20 Acm(-2)K(-2) with the help of modified Richardson plot. In addition, density of states at the interface were determined by using the forward bias I-V results.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    The Effect of Zn Concentration on the Structural and Optical Properties of Cd1-xznx< Nanostructured Thin Films
    (Springer, 2021) Isik, M.; Terlemezoglu, M.; Isik, S.; Erturk, K.; Gasanly, N. M.
    The structural and optical properties of electrodeposited Cd1-xZnxS nanostructured thin films were investigated in the present paper for compositions of x = 0, 0.03, 0.06 and 0.09. X-ray diffraction patterns of the deposited thin films consisted of diffraction peaks related to cubic crystal lattice. The atomic compositional ratios were determined by performing energy dispersive spectroscopy measurements. Scanning electron microscopy images indicated that deposited thin films have nanostructured forms. Raman spectra of the Cd1-xZnxS thin films exhibited two vibrational modes associated with longitudinal optical mode and its first overtone. Transmission measurements were performed on the deposited thin films to get their band gap energies. It was seen from the analyses of absorption coefficient that band gap energy of Cd1-xZnxS thin films increases almost linearly from 2.40 to 2.51 eV as the composition was increased from x = 0 to x = 0.09.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Electrical Characterization of Cdznte/Si Diode Structure
    (Springer Heidelberg, 2020) Balbasi, C. Dogru; Terlemezoglu, M.; Gullu, H. H.; Yildiz, D. E.; Parlak, M.
    Temperature-dependent current-voltage (I - V), and frequency dependent capacitance-voltage (C - V) and conductance-voltage (G - V) measurements were performed in order to analyze characteristics of CdZnTe/Si structure. Obtained profiles enable us to understand the different characteristics of the diode structure such as the carrier conduction mechanism and the nature of the interfacial layer. Over the temperature range between 220 and 340 K, taking consideration of the disparity in the forward-biased current, the diode parameters such as saturation current (I-0), zero-bias barrier height (Phi(B0)) and ideality factor (n) have been obtained. The barrier height increased (0.53 to 0.80 eV) while the ideality factor decreased (4.63 to 2.79) with increasing temperature from 220 to 340 K, indicating an improvement in the junction characteristics at high temperatures. Due to the inhomogeneity in barrier height, the conduction mechanism was investigated by Gaussian distribution analysis. Hence, the mean zero-bias barrier height ((Phi) over bar (B0)) and zero-bias standard deviation (sigma(0)) were calculated as 1.31 eV and 0.18, respectively. Moreover, for holes in p-type Si, Richardson constant was found to be 32.09 A cm(-2) K-2 via modified Richardson plot. Using the capacitance-voltage (C - V) and conductance-voltage (G - V) characteristics, series resistance (R-s) and density of interfacial traps (D-it) have been also investigated in detail. A decreasing trend for R-s and D-it profiles with increasing frequency was observed due to the impurities at the CdZnTe/Si interface and interfacial layer between the front metal contact and CdZnTe film.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources
    (Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.
    CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 15
    Frequency Effect on Electrical and Dielectric Characteristics of In/Cu2< Diode Structure
    (Springer, 2019) Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with series resistance values and density of interface states were investigated by taking into consideration of non-ideal electrical characteristics of the diode. The distribution profile of the interface states was extracted by Hill-Coleman and high-low frequency capacitance methods. As a function of frequency, they were in proportionality with the inverse of applied frequency. Dielectric constant and dielectric loss parameters were calculated from the maximum value of the diode capacitance at the strong accumulation region. The loss tangent showed a characteristic peak behavior at each frequency. Based on the time-dependent response of the interfacial charges to the applied ac field, the values of ac electrical conductivity and complex electric modulus were calculated and discussed as a function of frequency and bias voltage.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Growth and Optical Characterization of Sn0.6sb0.4< Layer Single Crystals for Optoelectronic Applications
    (Elsevier Sci Ltd, 2022) Bektas, T.; Terlemezoglu, M.; Surucu, O.; Isik, M.; Parlak, M.
    SnSe compound is an attractive semiconductor material due to its usage in photovoltaic applications. The sub-stitution of Sb in the SnSe compound presents a remarkable advantage especially in point of tuning optical characteristics. The present paper reports the structural and optical properties of Sn1-xSbxSe (x = 0.4) layered single crystals grown by the vertical Bridgman method. To the best of our knowledge, this work is the first investigation of the Sn0.6Sb0.4Se crystal grown with the vertical Bridgman technique. X-ray diffraction (XRD) pattern of the grown crystal indicated the well crystalline structure of the grown crystals. Lattice strain and interplanar spacing of the crystal structure were determined using the XRD pattern. Scanning electron micro-scope images allowed to the observation of the layer crystal structure. The layer crystalline structure shows 2D material properties and provides 2D applications. Optical properties were revealed by carrying out Raman, ellipsometry and transmission measurements. Raman modes, refractive index, extinction coefficient, and dielectric spectra, band gap energy of the crystal were presented throughout the paper. The obtained results indicated that Sn1-xSbxSe (x = 0.4) layer single crystals may be an alternative potential for photovoltaic and optoelectronic applications.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 16
    Investigation of Band Gap Energy Versus Temperature for Sns 2 Thin Films Grown by Rf-Magnetron Sputtering
    (Elsevier, 2020) Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    [No Abstract Available]
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 10
    Citation - Scopus: 10
    Investigation of Carrier Transport Mechanisms in the Cu-Zn Based Hetero-Structure Grown by Sputtering Technique
    (Canadian Science Publishing, 2018) Gullu, H. H.; Terlemezoglu, M.; Bayrakli, O.; Yildiz, D. E.; Parlak, M.
    In this paper, we present results of the electrical characterization of n-Si/p-Cu-Zn-Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current-voltage measurements in the temperature range of 220-360 K, room temperature, and frequency-dependent capacitance-voltage and conductance-voltage measurements. The anomaly in current-voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm(-2)K(-2) by means of modified Richardson plot.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Investigation of electrical characteristics of Ag/ZnO/Si sandwich structure
    (Springer, 2019) Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, temperature-dependent current-voltage (I-V), frequency-dependent capacitance-voltage (C-V) and conductance-voltage (G/omega-V) measurements are carried out for the electrical characterization of a zinc oxide (ZnO) thin film-based diode. The sandwich structure in the form of Ag/ZnO/Si/Al is investigated at temperatures between 220 and 360 K and in the frequency region of 1 kHz-1 MHz. ZnO thin film layer is deposited on a p-Si wafer substrate as a transparent conductive oxide layer by taking into consideration possible electronic applications with intrinsic attractive material properties. At each temperature step, the I-V curves showed about two orders of magnitude rectifying behavior and, according to the Schottky diode relation, the saturation current, zero-bias barrier height and ideality factor were extracted as a function of the temperature. In the case of non-ideal diode characteristics due to the inhomogeneties in the diode as observed from the characteristics of the calculated parameters, effective barrier height values are evaluated. In addition, based on the existence of the interface layer, density of interface states in the band gap region and parasitic resistances were determined by the capacitance measurements.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 12
    Citation - Scopus: 12
    Material and Si-based diode analyses of sputtered ZnTe thin films
    (Springer, 2020) Gullu, H. H.; Surucu, O. Bayrakli; Isik, M.; Terlemezoglu, M.; Parlak, M.
    Structural, optical, and electrical properties ZnTe thin films grown by magnetron sputtering technique were studied by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and electrical conductivity measurements. Structural analyses showed that ZnTe thin films grown on soda-lime glass substrates have a cubic crystalline structure. This crystalline nature of the films was also discussed in terms of Raman active modes. From atomic force microscopy images, the smooth and dense surface profile was observed. The conductivity of the film at room temperature was measured as 2.45 x 10(-4)(omega cm)(-1)and the temperature dependency of conductivity showed Arrhenius behavior. The dark conductivity profile was modeled by thermionic emission mechanism and activation energies were extracted. In addition, the conductivity values indicated an increasing behavior with illumination intensity applied between 20 and 115 mW/cm(2). The heterojunction diode was generated by sputtering ZnTe film on n-Si wafer substrate and the rectification behavior was evaluated to determine the main diode parameters.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 11
    Citation - Scopus: 13
    Optical and Structural Characteristics of Electrodeposited Cd1-xznx< Nanostructured Thin Films
    (Elsevier, 2021) Erturk, K.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.
    The structural and optical characteristics of Cd1-xZnxS (CdZnS) thin films grown by the electrodeposition method were investigated in the present paper. The crystalline structure of the grown CdZnS thin film was determined as cubic wurtzite due to observed diffraction peaks associated with (111) and (220) planes. Atomic compositional ratios of the constituent elements were obtained using energy dispersive spectroscopy and doping concentration of the Zn was found as 5% (x similar to 0.05). Scanning electron microscopy image of the studied thin film indicated that grown film is nanostructured. Raman spectra of CdS and CdZnS thin films were measured and it was seen that observed longitudinal optical modes for CdZnS present a blue-shift. Temperature-dependent band gap energy characteristics of the thin films were studied performing transmission experiments in the 10-300 K temperature range. The analyses of the recorded transmittance spectra showed that direct band gap energy of the films decreases from 2.56 eV (10 K) to 2.51 eV (300 K) with the increase of temperature. The band gap energy vs. temperature dependency was studied applying well-known Varshni optical model and various optical parameters of the films were reported according to the results of the applied model.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Structural and Temperature-Tuned Bandgap Characteristics of Thermally Evaporated β-in2< Thin Films
    (Springer, 2021) Surucu, O.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.; Parlak, M.
    In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated beta-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309 and 369 cm(-1) were observed in the Raman spectrum. Temperature-tuned bandgap energy characteristics of the In2S3 thin films were revealed from the investigation of transmittance spectra obtained at various temperatures between 10 and 300 K. The analyses of the transmittance spectra indicated that direct bandgap energy of the In2S3 thin films decreases from 2.40 eV (at 10 K) to 2.37 eV (at 300 K) with the increase of measurement temperature. The bandgap energy vs. temperature relation was investigated by means of Varshni optical model. The fitting of the experimental data under the light of theoretical expression revealed the absolute zero bandgap energy, the rate of change of bandgap energy and Debye temperature.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 20
    Citation - Scopus: 24
    Temperature Dependence of Band Gaps in Sputtered Snse Thin Films
    (Pergamon-elsevier Science Ltd, 2019) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    Temperature-dependent transmission experiments were performed for tin selenide (SnSe) thin films deposited by rf magnetron sputtering method in between 10 and 300 K and in the wavelength region of 400-1000 nm. Transmission spectra exhibited sharp decrease near the absorption edge around 900 nm. The transmittance spectra were analyzed using Tauc relation and first derivative spectroscopy techniques to get band gap energy of the SnSe thin films. Both of the applied methods resulted in existence of two band gaps with energies around 1.34 and 1.56 eV. The origin of these band gaps was investigated and it was assigned to the splitting of valence band into two bands due to spin-orbit interaction. Alteration of these band gap values due to varying sample temperature of the thin films were also explored in the study. It was seen that the gap energy values increased almost linearly with decreasing temperature as expected according to theoretical knowledge.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 14
    Citation - Scopus: 14
    Temperature Dependence of Electrical Properties in In/Cu2< Diodes
    (indian Acad Sciences, 2019) Gullu, H. H.; Yildiz, D. E.; Surucu, O. Bayrakli; Terlemezoglu, M.; Parlak, M.
    Cu2ZnSnTe4 (CZTTe) thin films with In metal contact were deposited by thermal evaporation on monocrystalline n-type Si wafers with Ag ohmic contact to investigate the device characteristics of an In/CZTTe/Si/Ag diode. The variation in electrical characteristics of the diode was analysed by carrying out current-voltage (I-V) measurements in the temperature range of 220-360 K. The forward bias I-V behaviour was modelled according to the thermionic emission (TE) theory to obtain main diode parameters. In addition, the experimental data were detailed by taking into account the presence of an interfacial layer and possible dominant current transport mechanisms were studied under analysis of ideality factor, n. Strong effects of temperature were observed on zero-bias barrier height (Phi(B0)) and n values due to barrier height inhomogeneity at the interface. The anomaly observed in the analysis of TE was modelled by Gaussian distribution (GD) of barrier heights with 0.844 eV mean barrier height and 0.132 V standard deviation. According to the Tung's theoretical approach, a linear correlation between Phi(B0) and n cannot be satisfied, and thus the modified Richardson plot was used to determine Richardson constant (A*). As a result, A* was calculated approximately as 120.6 A cm(-2) K-2 very close to the theoretical value for n-Si. In addition, the effects of series resistance (R-s) by estimating from Cheng's function and density of surface states (N-ss) by taking the bias dependence of effective barrier height, were discussed.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Temperature Dependent Band Gap in Sns2x< (x=0.5) Thin Films
    (Elsevier Sci Ltd, 2020) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Gasanly, N. M.; Parlak, M.
    Structural and optical properties of SnS2xSe(2-2x) thin films grown by magnetron sputtering method were investigated for composition of x = 0.5 (SnSSe) in the present study. X-ray diffraction, energy dispersive X-ray spectroscopy, atomic force microscopy and scanning electron microscopy methods were used for structural characterization while temperature-dependent transmission measurements carried out at various temperatures in between 10 and 300 K were accomplished for optical investigations. X-ray diffraction pattern of studied composition presented peaks at positions which are between those of SnSe2 and SnS2. Transmittance spectra recorded at all applied temperatures were analyzed using well-known Tauc relation. Analyses revealed the direct band gap energy value of SnSSe thin films as 1.75 eV at room temperature. Change of band gap energy as a response to varying temperature were discussed in the study by utilizing Varshni relation. It was shown that variation of gap energy values was well-matched with the Varshni's empirical formula. Energy band gap at absolute zero and rate of change of band gap with temperature were found to be 1.783 eV and -2.1 x 10(-4) eV K-1, respectively.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Temperature Effects on Optical Characteristics of Thermally Evaporated Cusbse2 Thin Films for Solar Cell Applications
    (Elsevier, 2022) Surucu, O.; Isik, M.; Terlemezoglu, M.; Bektas, T.; Gasanly, N. M.; Parlak, M.
    CuSbSe2 thin film was deposited by co-evaporation of binary CuSe and Sb2Se3 sources. The structural and morphological properties of the deposited thin film were investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis measurements. XRD pattern indicated that deposited thin film has an orthorhombic crystalline structure with the preferential orientation of (013) direction. SEM image presented that the thin film surface is almost uniform. The optical characteristics of the deposited CuSbSe2 thin film were investigated in detail by performing room temperature Raman, temperature-dependent transmittance spectroscopy, and photoluminescence techniques. Raman spectrum exhibited one mode at around 210 cm(-1) associated with A(g) vibrational mode. The derivative spectroscopy technique was used to obtain the band gap energy of the films. Temperature dependence of band gap energy was investigated by considering the Varshni model. The rate of change of band gap energy, absolute zero value of gap energy, and Debye temperature were determined as 1.3 x 10(-4) eV/K, 1.21 eV, and 297 +/- 51 K, respectively. The photoluminescence spectrum indicated the room temperature direct band gap energy as 1.30 eV.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 4
    Citation - Scopus: 3
    Temperature-dependent material characterization of CuZnSe2 thin films
    (Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.
    In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 43
    Citation - Scopus: 41
    Temperature-Dependent Optical Characteristics of Sputtered Nio Thin Films
    (Springer Heidelberg, 2022) Terlemezoglu, M.; Surucu, O.; Isik, M.; Gasanly, N. M.; Parlak, M.
    In this work, nickel oxide thin films were deposited by radio frequency magnetron sputtering technique. X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive X-ray analysis methods were applied to reveal the structural and morphological properties of sputtered thin films. The XRD pattern of films confirmed the presence of the cubic phase of nickel oxide with the preferential orientation of (200) direction. The surface morphology of thin films was observed as almost uniform and smooth. Optical aspects of sputtered film were studied by employing the room temperature Raman and temperature-dependent transmittance spectroscopy techniques in the range of 10-300 K. Tauc relation and derivative spectroscopy techniques were applied to obtain the band gap energy of the films. In addition, the relation between the band gap energy and the temperature was investigated in detail considering the Varshni optical model. The absolute zero band gap energy, rate of change of band gap energy, and Debye temperature were obtained as 3.57 eV, - 2.77 x 10(-4) eV/K and 393 K, respectively.
  • «
  • 1 (current)
  • 2
  • »
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback