Browsing by Author "Khan, Muhammad Umer"
Now showing 1 - 20 of 28
- Results Per Page
- Sort Options
Conference Object Citation Count: 5Attitude Control of Quad-copter using Deterministic Policy Gradient Algorithms (DPGA)(Institute of Electrical and Electronics Engineers Inc., 2019) Ghouri,U.H.; Zafar,M.U.; Bari,S.; Khan,H.; Khan,M.U.; Mechatronics EngineeringIn aerial robotics, intelligent control has been a buzz for the past few years. Extensive research efforts can be witnessed to produce control algorithms for stable flight operation of aerial robots using machine learning. Supervised learning has the tendency but training an agent using supervised learning can be a tedious task. Moreover, the data gathering could be expensive and always prone to inaccuracies due to parametric variations and system dynamics. An alternative approach is to ensure the stability of the aerial robots with the help of Deep Re-inforcement Learning (DRL). This paper deals with the intelligent control of quad-copter using deterministic policy gradient algorithms. In this research, state of the art Deep Deterministic Policy Gradient (DDPG) and Distributed Distributional Deep Deterministic Policy Gradient (D4PG) algorithms are employed for attitude control of quad-copter. An open source simulation environment GymFC is used for training of quad-copter. The results for comparative analysis of DDPG D4PG algorithms are also presented, highlighting the attitude control performance. © 2019 IEEE.Conference Object Citation Count: 5Attitude Control of Quad-copter using Deterministic Policy Gradient Algorithms (DPGA)(Ieee, 2019) Ghouri, Usama Hamayun; Zafar, Muhammad Usama; Bari, Salman; Khan, Haroon; Khan, Muhammad Umer; Mechatronics EngineeringIn aerial robotics, intelligent control has been a buzz for the past few years. Extensive research efforts can be witnessed to produce control algorithms for stable flight operation of aerial robots using machine learning. Supervised learning has the tendency but training an agent using supervised learning can be a tedious task. Moreover, the data gathering could be expensive and always prone to inaccuracies due to parametric variations and system dynamics. An alternative approach is to ensure the stability of the aerial robots with the help of Deep Re-inforcement Learning (DRL). This paper deals with the intelligent control of quad-copter using deterministic policy gradient algorithms. In this research, state of the art Deep Deterministic Policy Gradient (DDPG) and Distributed Distributional Deep Deterministic Policy Gradient (D4PG) algorithms are employed for attitude control of quad-copter. An open source simulation environment GymFC is used for training of quad-copter. The results for comparative analysis of DDPG & D4PG algorithms are also presented, highlighting the attitude control performance.Article Citation Count: 0Autonomous landing of a quadrotor on a moving platform using motion capture system(Springer, 2024) Qassab, Ayman; Khan, Muhammad Umer; Irfanoglu, Bulent; Mechatronics Engineering; Department of Mechatronics EngineeringThis paper investigates the challenging problem of the autonomous landing of a quadrotor on a moving platform in a non-cooperative environment. The limited sensing ability of quadrotors often hampers their utilization for autonomous landing, especially in GPS-denied areas. The performance of motion capture systems (MCSs) in many application areas is the motivation to utilize them for the autonomous take-off and landing of the quadrotor in this research. An autonomous closed-loop vision-based navigation, tracking, and control system is proposed for quadrotors to perform landing based upon Model Predictive Control (MPC) by utilizing multi-objective functions. The entire process is posed as a constrained tracking problem to minimize energy consumption and ensure smooth maneuvers. The proposed approach is fully autonomous from take-off to landing; whereas, the movements of the landing platform are pre-defined but still unknown to the quadrotor. The landing performance of the quadrotor is tested and evaluated for three different movement patterns: static, square-shaped, and circular-shaped. Through experimental results, the pose error between the quadrotor and the platform is measured and found to be less than 30 cm. Introducing a holistic vision system for quadrotor navigation, tracking, and landing on stationary/moving platforms. Proposing an energy-efficient, smooth, and stable MPC controller validated by Lyapunov analysis. Validating the adept tracking and safe landings of the quadrotor on stationary/moving platforms through three diverse experiments.Article Citation Count: 2Avoiding contingent incidents by quadrotors due to one or two propellers failure(Public Library Science, 2023) Altinuc, Kemal Orcun; Khan, Muhammad Umer; Iqbal, Jamshed; Mechatronics EngineeringWith the increasing impact of drones in our daily lives, safety issues have become a primary concern. In this study, a novel supervisor-based active fault-tolerant (FT) control system is presented for a rotary-wing quadrotor to maintain its pose in 3D space upon losing one or two propellers. Our approach allows the quadrotor to make controlled movements about a primary axis attached to the body-fixed frame. A multi-loop cascaded control architecture is designed to ensure robustness, stability, reference tracking, and safe landing. The altitude control is performed using a proportional-integral-derivative (PID) controller, whereas linear-quadratic-integral (LQI) and model-predictive-control (MPC) have been investigated for reduced attitude control and their performance is compared based on absolute and mean-squared error. The simulation results affirm that the quadrotor remains in a stable region, successfully performs the reference tracking, and ensures a safe landing while counteracting the effects of propeller(s) failures.Master Thesis Bilinmeyen ortamlarda robot sürüleri için algoritma planlamada etkin bir yol(2020) Abdı, Mohammed Isam Ismael; Khan, Muhammad Umer; Mechatronics EngineeringBirçok durumda birkaç mobil robot —bağımsız ajan— tek bir robot için gerçekleştirilmesi zor veya imkânsız hedefleri elde etmek amacıyla ekip halinde bir araya gelebilirler. Bu mobil robotlar belli bir görevi yerine getirmek için iş birliği yapabilirler, bu, sürünün büyüklüğüyle tam bir karşılıklı ilişki halindedir. Tek tek her robot sensörlerini kullanarak yerel ortamla karşılıklı olarak etkileşir. Sürü açısından birincil endişe başlangıçtan hedef yere kadar güvenli bir yolun tanımlanması ve izlenmesidir. Literatürde bu hedefin gerçekleştirilmesiyle ilgili Neural Network (Sinir Ağları), Genetic Algorithms (Genetik Algoritmalar), Bacterial Foraging Optimization (Bakteriyel Besin Arama Optimizasyonu), Ant Colony Optimization (Karınca Kolonisi Optimizasyonu), Artificial Potential Field (Yapay Potansiyel Alan), v.b. gibi pek çok algoritma mevcuttur. Bunlar arasında Bacterial Foraging Optimization (BFO) algoritması çalışma ortamında bilinen tüm engelleri göz önüne alarak güvenliği ve hedefin bulunmasını sağlamaktaki etkinliği nedeniyle pek çok bilimcinin dikkatini çekmektedir. Ayrıca, belirlenen yolu keşfeder ve doğru olarak izler. BFO kümeleşme prensiplerini ve doğadaki sosyal davranışlar analojisini kullanan, ilhamını biyolojiden alan doğrudan yaklaşımlı ama güçlü bir optimizasyon yöntemidir. BFO yassı bir yüzey haritası üzerinde engellerin varlığında başlangıçtan hedef noktaya kadar optimal yolu başarıyla araştırır. Ancak bu algoritma, konveks olmayan engellerin işe karışması durumunda yerel asgari şartlara sıkışmak gibi bir zayıflığa sahiptir. Sürünün robotlarından herhangi birinin sıkışıp kalması durumu görevinin tamamının başarısızlığı olarak görülmektedir. Bu araştırma BFO algoritmasının hem konveks olan hem de olmayan niteliklerdeki engellerden başarıyla kaçınılmasını sağlayan iyileştirilmiş bir versiyonunu önermektedir. Önerilen algoritma engele zıt yöndeki belli bir mesafeyi kapsayarak robotun yerel asgari değerlerden kurtulmasına yardım eder. Sert bir açıyla karşılaşıldığında algoritma güvenli bir yol oluşturmak için görsel engeller oluşturmaya başlar. Daha sonra bu bilgi diğer robotlara aktarılarak onların da yerel minimumlardan kaçınmaları sağlanır. Önerilen algoritmanın etkinliğinin test edilmesi için mevcut BFO algoritmasıyla bir karşılaştırma yapılmıştır. Her iki algoritmanın performansı bilinmeyen dinamik ve statik ortamlarda test edilmiştir. Sonuçlara göre, önerilen algoritmanın yerel minimumlardan başarıyla kurtulduğu ve BFO'nun sıkışıp kaldığı gözlenmiştir.Conference Object Citation Count: 4Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements(Ieee, 2018) Qureshi, Muhammad Hamza; Masood, Zeeshan; Rehman, Linta; Owais, Muhammad; Khan, Muhammad Umer; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton.Conference Object Citation Count: 9Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements(Institute of Electrical and Electronics Engineers Inc., 2018) Qureshi,M.H.; Masood,Z.; Rehman,L.; Owais,M.; Khan,M.U.; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton. © 2018 IEEE.Conference Object Citation Count: 9Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements(Institute of Electrical and Electronics Engineers Inc., 2018) Qureshi,M.H.; Masood,Z.; Rehman,L.; Owais,M.; Khan,M.U.; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton. © 2018 IEEE.Conference Object Citation Count: 2Convolution Neural Network (CNN) Based Automatic Sorting of Cherries(Institute of Electrical and Electronics Engineers Inc., 2021) Park,H.; Khan,M.U.; Mechatronics EngineeringCherries are spring fruits enriched with nutrients, and are easily available in food markets around the world. Due to their excess demand, many enterprises solely focused on their processing. Cherries are especially susceptible to pathological-, physiological-diseases and structural degradation due to their soft outer skin. The post-harvest life of the fruit is limited by various characteristics. The agricultural industry has also been at the forefront to get benefits from the advanced machine learning tools. This study presents an image processing-based system for sorting cherries using the convolutional neural network (CNN). For this study, Prunus avium L cherries of export quality, available in Turkey, tagged as ‘0900 Ziraat’, are used. Surprisingly, there exists no dataset for these cherries; hence, we developed our dataset. Through the proposed approach based upon U-Net, the binary classification accuracy of 99% is achieved. Clear identification is demonstrated by the test results of varying mixture ratios of good and bad cherries. It can therefore be said that for cherry sorting and grading, U-Net can be applied as a reliable and promising machine learning tool. ©2021 IEEEArticle Citation Count: 7Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets(Mdpi, 2022) Kadhim, Yezi Ali; Khan, Muhammad Umer; Mishra, Alok; Software Engineering; Mechatronics EngineeringComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.Article Citation Count: 0Ensemble transfer learning using MaizeSet: A dataset for weed and maize crop recognition at different growth stages(Elsevier Sci Ltd, 2024) Das, Zeynep Dilan; Alam, Muhammad Shahab; Khan, Muhammad Umer; Mechatronics EngineeringMaize holds significant importance as a staple food source globally. Increasing maize yield requires the effective removal of weeds from maize fields, as they pose a detrimental threat to the growth of maize plants. In recent years, there has been a drive towards Precision Agriculture (PA), involving the integration of farming methods with artificial intelligence and advanced automation techniques. In the realm of PA, deep learning techniques present a promising solution for addressing the complex challenge of classifying maize plants and weeds. In this work, a deep learning method based on transfer learning and ensemble techniques is developed. The proposed method is implementable on any number of existing CNN models irrespective of their architecture and complexity. The developed ensemble model is trained and tested on our custom-built dataset, namely MaizeSet, comprising 3330 images of maize plants and weeds under varying environmental conditions. The performance of the ensemble model is compared against individual pre-trained VGG16 and InceptionV3 models using two experiments: the identification of weeds and maize plants, and the identification of the various vegetative growth stages of maize plants. VGG16 attained an accuracy of 83% in Experiment 1 and 71% in Experiment 2, while InceptionV3 showcased improved performance, boasting an accuracy of 98% in Experiment 1 and 81% in Experiment 2. With the proposed ensemble approach, VGG16 when combined with InceptionV3, achieved an accuracy of 90% for Experiment 1 and 80% for Experiment 2. The findings demonstrate that integrating a suboptimal pre-defined classifier, specifically VGG16, with a more proficient model like InceptionV3, yields enhanced performance across various analytical metrics. This underscores the efficacy of ensemble techniques in the context of maize classification and analogous applications within the agricultural domain.Article Citation Count: 6Escaping Local Minima in Path Planning Using a Robust Bacterial Foraging Algorithm(Mdpi, 2020) Abdi, Mohammed Isam Ismael; Khan, Muhammad Umer; Gunes, Ahmet; Mishra, Deepti; Mechatronics Engineering; Department of Mechatronics Engineering; Computer EngineeringThe bacterial foraging optimization (BFO) algorithm successfully searches for an optimal path from start to finish in the presence of obstacles over a flat surface map. However, the algorithm suffers from getting stuck in the local minima whenever non-circular obstacles are encountered. The retrieval from the local minima is crucial, as otherwise, it can cause the failure of the whole task. This research proposes an improved version of BFO called robust bacterial foraging (RBF), which can effectively avoid obstacles, both of circular and non-circular shape, without falling into the local minima. The virtual obstacles are generated in the local minima, causing the robot to retract and regenerate a safe path. The proposed method is easily extendable to multiple robots that can coordinate with each other. The information related to the virtual obstacles is shared with the whole swarm, so that they can escape the same local minima to save time and energy. To test the effectiveness of the proposed algorithm, a comparison is made against the existing BFO algorithm. Through the results, it was witnessed that the proposed approach successfully recovered from the local minima, whereas the BFO got stuck.Master Thesis Hava manipülatörü için farklı kontrol sistemlerinin tasarımı(2019) Başaranoğlu, Ahmet Turgut; Khan, Muhammad Umer; Arıkan, Kutluk Bilge; Mechatronics EngineeringBu tez kapsamında, dört rotorlu bir multikopter ve tek serbestlik dereceli robot koldan oluşan bir uçan manipülatör için yönelim ve pozisyon denetimcileri tasarlanmış ve tartışılmıştır. Robotik kol uçan platformun yunuslama düzleminde çalışmaktadır. Seçilen senaryolara yönelik çeşitli denetim algoritmaları tasarlanmıştır. Bütüncül sistem dinamiğine (multikopter ve manipülatörün etkileşimli doğrusal olmayan modeli) yönelik merkezi denetimciler tasarlanmıştır. Bununla birlikte, platform ve manipülatörü ayrı ayrı denetleyen dağıtılmış kontrol sistemleri de tasarlanmıştır. Robotik kolun uçan sisteme etki eden bozucu girdinin bertaraf edilmesine, sistemin yönelim ve pozisyon kontrolüne yönelik kullanımı senaryolar çerçevesinde çalışılmıştır. ADRC, T-LQR ve ardışık PID denetim algoritmaları tasarlanmıştır. Seçilen denetim yapısı ve senaryo iç mekanda çalışan bir uçan manipülatör üzerinde uygulanmıştır. Ultra geniş bant konumlandırma sistemi pozisyon ve yükseklik ölçümü için kullanılmıştır. Raspberry Pi 3 B +, Naze 32 donanımı ile Phyton kodu ve Matlab/Simulink yazılımı kullanarak gerçek zamanlı testler gerçekleştirilmiştir. Yönelik denetimcisi parametrelerinin test düzeneği üzerinde ince ayarları gerçekleştirilmiştir. Temel uçuş testleri ile yönelim ve pozisyon kontrolcü parametreleri düzenlenmiştir. Benzetimler ve testler ile robotik manipülatörün bozucu girdileri bertaraf etmeye, yönelim ve pozisyon denetimini sağlamaya yönelik kullanımı gösterilmiştir. Anahtar Kelimeler: Uçan Manipülatör, Kuadkopter, ADRC, Takipçi LQR, Ardışık PID, Naze 32, Raspberry Pi, İç Mekan Konumlama, Yönelim Denetimi, Pozisyon DenetimiArticle Citation Count: 12Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)(Frontiers Media Sa, 2020) Khan, Muhammad Umer; Hasan, Mustafa A. H.; Mechatronics EngineeringBrain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.Master Thesis Kolektif derin öğrenme ve transfer öğrenme yoluyla mahsul ve meyve sınıflandırması(2023) Daşkın, Zeynep Dilan; Khan, Muhammad Umer; Mechatronics EngineeringSon yıllarda yapılan teknolojik gelişmeler, tarım sektörünü hızlı bir şekilde yeniden şekillendirerek, daha önce kullanılmakta olan geleneksel metotlarda devrim yaratıyor ve insanlık için daha sürdürülebilir ve üretken bir geleceğin yolunu açıyor. Tarım sektörü, makine öğrenmesi, sensor ve mekanizmaları kullanarak otomatikleşirken, aynı zamanda verimlilik artımı, kaynak yönetimi ve mahsul sağlığı açısından da köklü bir değişim yaşıyor. Bu tez çalışmasında, son teknoloji makine öğrenimi tabanlı görüntü işleme teknikleri ve algoritmaları kapsamlı bir şekilde araştırılmış ve analiz edilmiştir. Amaç, çeşitli mahsulleri, meyveleri ve sebzeleri doğru bir şekilde tespit eden, tanımlayan ve sınıflandıran sağlam metodolojiler geliştirmektir. Nihai hedef, gelişen tarımsal otomasyon endüstrisine önemli ölçüde katkıda bulunmak, süreçleri kolaylaştırmak ve tarım sektöründe verimliliği arttırmaktır. Gerçek yaşam koşullarına en yakın sonuçları elde etmek için, yazarların kendi oluşturduğu mahsul veri kümeleri bu araştırma boyunca önerilen algoritmalara entegre edilmiş ve kullanılmıştır. Bu çalışma sırasında kullanılan mevcut Evrişimsel Sinir Ağları algoritmaları AlexNet, GoogleNet, InceptionV3, SqueezeNet, DenseNet ve VGG-16'dır. Bu çalışmada, doğruluk, kayıp, F1-skoru, tahmin, kesinlik ve duyarlılık olmak üzere genel değerlendirme metriklerinin performansını yükseltmek için çeşitli gelişmiş algoritmalar araştırılmış ve incelenmiştir. Özellikle, tarımsal otomasyon sisteminin etkinliğini ve güvenilirliğini arttırmayı amaçlayan Kolektif Öğrenme ve Öğrenme Aktarımı adlı iki metot tanıtılmış ve kapsamlı bir şekilde analiz edilmiştir. Çalışmanın sonuçları, önerilen algoritmaların tarım endüstrisinde son derece etkili olduğunu ve istenen sonuçları benzersiz bir doğruluk ve hassasiyetle sunma yeteneklerini kanıtlamaktadır. Bu sonuçlar, bu algoritmaların operasyonel verimliliği önemli ölçüde arttırma, kaynak tahsisini optimize etme ve gelecek için tarımsal otomasyonda sürdürülebilir uygulamaları teşvik etme gibi potansiyellerini de göstermekte ve teyit etmektedir.Master Thesis Motor görüntü görevlerinin hibrit elektroensefalografi (Eeg)- işlevesel kızılötesine yakın spektroskopi (Fnirs) beyin bilgisayar ara birimi (BCI) sınıflandırması(2019) Hasan, Mustafa Amer Hasan; Khan, Muhammad Umer; Mechatronics EngineeringHibrid Beyin Bilgisayar Ara Birimi, iki ya da daha fazla nörofizyolojik sinyalin birleşimidir ve tek modalite sakıncalarını tamamlama yeteneği ile uyumlu hale getirici özellikleri ortaya çıkarmada güvenilir sonuçlar elde etmesiyle dikkat çekmektedir. Simultane biçimde kaydedilen işlevsel kızılötesine yakın spektroskopi(fNIRS) füzyonu ve Elektroensefalografi (EEG)aracılığı ile elde edilen hibrid bir EEG-fNIRS BCI sistemi, tek-modalite sınırlarını aşmak ve yüksek motor görevlerinin üstesinden gelmek üzere kullanılmaktadır. Her ne kadar hibrid BCI yaklaşımı sistemin performansını başarıya ulaştırsa da, hala ilerlemeler iki modaliteyi birleştirmek üzere hesaplama olmaması nedeniyle henüz makul düzeydedir. Bu teze katkılar iki yönlüdür: en çok temsili kanalları seçme konusundaki roman kanal seçim katsayı korelasyonu ve Çoklu çözünürlük tek değerli dekompozisyan kullanan roman füzyon yaklaşımı (MSVD). MSVD' den, optimal EEG-fNIRS kanallar için hem sistem-temelli ve hem de özellik-temelli füzyon elde etmekte yararlanılır. Bu teze diğer bir katkı da, özellik-temelli füzyon için kanonik korelasyon analizinden (CCA) yararlanmaktır. Korelasyon analizi, öncelikle iki modalite arasındaki ilişki üzerinde çalışmak üzere kullanılmaktadır. CCA özellik-temelli füzyon, iki modalite üstünden inter-konulu orta değişikliği maksimize ederek performansı arttırdı. Simülasyon sonuçları vasıtasıyla, hesaplama karmaşıklığını azaltırken, amaçlanan yaklaşımların optimal performansı elde etmeye katkı sağladığına tanık olunabilmektedir.Master Thesis Optı-track kameraları kullanarak birden fazla temsilci için yerelleştirme ve yol planlaması(2021) Al-qassab, Ayman; Khan, Muhammad Umer; Mohammadzadeh, Mohammad Hassan Gol; Mechatronics EngineeringFiziksel bir mekandaki nesnelerin veya canlıların hareketlerinin dijital olarak algılanması ve kaydedilmesi işlemi, Opti-Track sistemi gibi hareket yakalama (MoCap) sistemi kullanılarak gerçekleştirilir. Bu çalışmada hareket yakalama sisteminin amacı, hem quadrotor hem de mobil platformun pozlarını sürekli olarak belirlemektir. Konum bilgisi navigasyon sistemi tarafından quadrotor'u hareketli mobil platforma yönlendirmek ve güvenli bir şekilde inmek için kullanılır. İstenen sonuçları iyi bir doğrulukla elde etmek için mobil platformu izlemek için bir Kalman filtresi kullanılır. Ayrıca, mobil platformun gelecekteki konumunu tahmin etmek için başka bir Kalman filtresi kullanılmıştır. Quadrotoru tahmin edilen konuma yönlendirmek için bir model öngörücü kontrolör (MPC) kullanılır. Model öngörücü kontrolü, quadrotor'un istenen yolu izlemesine yardımcı olur. Bu çalışma, hareketli bir mobil platformun gelecekteki konumunu tahmin etmek ve quadrotor'u mobil platforma yönlendirmek için hareket yakalama sisteminin bilgisini ve Kalman filtresini kullanan bir navigasyon sistemi önerdi. Navigasyon sistemi, quadrotor'un kalkışını, seyir yörüngesini ve mobil platforma inişini otonom olarak kontrol eder. Önerilen navigasyon sisteminin performansını ve güvenilirliğini doğrulamak için çeşitli deneyler yapılmıştır. Deneylerin sonuçları, önerilen navigasyon sisteminin istenen sonuçlara ulaşmada etkili olduğunu kanıtladığını göstermektedirMaster Thesis Parça swarm optimizasyonunu (PSO) kullanarakresiprokal altruizm tabanlı yol planlaması(2019) Maeedı, Alı Fadhıl Alı; Khan, Muhammad Umer; Mechatronics EngineeringDoğanın sorunları ile başa çıkmak, her zaman zorlu bir görev olmuştur, bunu daha zorlaştıran şey ise zamanla çalışma koşullarındaki değişimdir. Bu nedenle, zaman içinde sürekli değişen optimayı takip edebilecek sağlam bir algoritmaya ihtiyaç vardır. Bu tezde, partikül bilgisinin paylaşılmasını sağlayarak performansın geliştirilmesi amacıyla bir parçacık sürüsü optimizasyonuna dayalı popülasyon akrabalık bağlantısının önerilmiştir. Karşılıklı Fedakarlığa Dayalı Parçacık Sürü Optimizasyonu (RAPSO) olarak tanımlanan algoritma, optimizasyon işlemi sırasında partiküller arasındaki benzerliği, peyzajla ilgili anlamlı verileri geri almak için kullanır. Resiprokal altruizm (Karşılıklı Özgecilik) teorisi, örneğin farklı grup içi işbirlikçi davranış biçimlerinde neden olan ilgisiz parçacıkların çiftler olarak yardımcı olduğunu açıklığa kavuşturmak için düzenli olarak düzenlenmiştir; hermafroditik balıklar arasında yumurta alışverişi, vampir yarasalar arasında kan yayılması, geri tepmeler arasında yırtıcı hayvanların değerlendirilmesi, vervet maymunları ve impala arasında serbest bırakma, insanlar arasında yaşama payı, kahverengi capuchin maymunları ve temel şempanzeler. Karşılıklı hareket kavramını kullanan RAPSO, bilgi alışverişi yoluyla tüm parçacıkların birbiriyle yakın temasta kalmasını sağlayacaktır. Ayrıca, parçacıklar arasında değiştirilen bilgi miktarı, arama alanı bölgelerine fiziksel olarak yerleştirilmelerine bağlıdır. Bölgelerine bağlı olarak, bağışçı veya alıcı olarak sınıflandırılabilirler; ayrıca, parçacıklar arasında değiştirilen bilgi miktarı doğrudan ilişkili sağlık göstergeleri ile izlenir. Önerilen yaklaşımın performansı, karşılıklı paylaşımın, sürünün optimize edilmiş yol boyunca hareketini kontrol etmek için etkin bir rol oynadığını göstermektedir. Simülasyon sonuçları, RAPSO'nun konik PSO algoritmasını hem hata azaltma hem de yakın bağlantı açısından daha iyi performans gösterdiğini kanıtladı.Master Thesis Pervane arızası durumunda kuadrotorun stabilitesini sağlamak(2021) Altınuç, Kemal Orçun; Khan, Muhammad Umer; Mechatronics EngineeringBu tezde, sabit kanatlı bir kuadrotorun, yalpalama hareketinden feragat ederek bir veya iki zıt pervanesini kaybetmesine rağmen 3 boyutlu uzayda konumunu koruması için bir çözüm sunulmaktadır. Bu kontrol stratejisinde, kuadrotor, araca göre sabitlenmiş bir birincil eksen etrafında döner ve bu ekseni ötelenme hareketi gerçekleştirmek için değiştirir. Bir pervane veya iki karşıt pervane kaybetmesine rağmen kuadrotorun tutumunu ve konumunu stabilize etmek için çok döngülü bir kademeli kontrol kanunu geliştirilmiştir. İlk olarak, motor arıza senaryoları için denge çözümleri hesaplanır. Daha sonra, bir referans ve bir özel kuadrotor için doğrusallaştırılmış sistem etrafında bir azaltılmış durum denetleyicisi ve konum denetleyicisi tasarlanır. Matlab/Simulink ve Matlab/Simscape üzerinde simülasyonlar yapılarak sonuçlar karşılaştırılır. Son olarak, özel yapım bir kuadrotorun CAD çizimleri, kuadrotorun eylemsizlik momentini hesaplamak için kullanılır ve sonuçlar Çift Telli Pendulum deneyi ile doğrulanır. Sonuçlar, kuadrotorun pervane arızası durumunda stabiliteye ulaştığını göstermektedir.Conference Object Citation Count: 57Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture(Ieee, 2020) Alam, Mansoor; Alam, Muhammad Shahab; Roman, Muhammad; Tufail, Muhammad; Khan, Muhammad Umer; Khan, Muhammad Tahir; Mechatronics EngineeringTraditional agrochemical spraying techniques often result in over or under-dosing. Over-dosing of spray chemicals is costly and pose a serious threat to the environment, whereas, under-dosing results in inefficient crop protection and thereby low crop yields. Therefore, in order to increase yields per acre and to protect crops from diseases, the exact amount of agrochemicals should be sprayed according to the field/crop requirements. This paper presents a real-time computer vision-based crop/weed detection system for variable-rate agrochemical spraying. Weed/crop detection and classification were performed through the Random Forest classifier. The classification model was first trained offline with our own created dataset and then deployed in the field for testing. Agrochemical spraying was done through application equipment consisting of a PWM-based fluid flow control system capable of spraying the desired amounts of agrochemical directed by the vision-based feedback system. The results obtained from several field tests demonstrate the effectiveness of the proposed vision-based agrochemical spraying framework in real-time.