Avoiding contingent incidents by quadrotors due to one or two propellers failure

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library Science

Research Projects

Organizational Units

Organizational Unit
Mechatronics Engineering
(2002)
The Atılım University Department of Mechatronics Engineering started its operation in 2002 as the Education Program in Mechatronics Engineering holding a “department” status in Turkey. In addition, it is the first and the only institution for mechatronic engineering education to obtain a MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) accreditation for a duration of 5 years. Mechatronics engineering is a discipline of engineering that combines mechanical, electrical and electronic engineering and software technologies on a machine or a product. These features place the field on a pedestal in today’s industry. The education at our department is also backed by substantial laboratory opportunities. Our students create interesting products of their skills and creativity for their dissertation projects. Should they wish to do so, our students may also proceed with a double-major program in the fields of Computer Engineering, Electrical - Electronics Engineering, Industrial Engineering, or Mechanical, Automotive or Software Engineering. Upon their demands, the Department of Mechatronic Engineering also offers a “Cooperative Education” program implemented in coordination with industrial institutions. Students receiving a portion of their training at industrial institutions and prepare for professional life under this program

Journal Issue

Abstract

With the increasing impact of drones in our daily lives, safety issues have become a primary concern. In this study, a novel supervisor-based active fault-tolerant (FT) control system is presented for a rotary-wing quadrotor to maintain its pose in 3D space upon losing one or two propellers. Our approach allows the quadrotor to make controlled movements about a primary axis attached to the body-fixed frame. A multi-loop cascaded control architecture is designed to ensure robustness, stability, reference tracking, and safe landing. The altitude control is performed using a proportional-integral-derivative (PID) controller, whereas linear-quadratic-integral (LQI) and model-predictive-control (MPC) have been investigated for reduced attitude control and their performance is compared based on absolute and mean-squared error. The simulation results affirm that the quadrotor remains in a stable region, successfully performs the reference tracking, and ensures a safe landing while counteracting the effects of propeller(s) failures.

Description

Iqbal, Jamshed/0000-0002-0795-0282; Khan, Muhammad/0000-0002-9195-3477

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Q2

Scopus Q

Q1

Source

Volume

18

Issue

3

Start Page

End Page

Collections