Afthd: Bayesian Accelerated Failure Time Model for High-Dimensional Time-To Data

dc.authorscopusid57716614900
dc.authorscopusid52563214400
dc.authorscopusid23493808300
dc.authorscopusid12041740200
dc.contributor.authorKumari, Pragya
dc.contributor.authorBhattacharjee, Atanu
dc.contributor.authorVishwakarma, Gajendra K.
dc.contributor.authorTank, Fatih
dc.date.accessioned2025-05-05T19:06:00Z
dc.date.available2025-05-05T19:06:00Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-temp[Kumari, Pragya; Vishwakarma, Gajendra K.] Indian Inst Technol Dhanbad, Dept Math & Comp, Dhanbad 826004, Jharkhand, India; [Bhattacharjee, Atanu] Univ Dundee, Sch Med, Populat Hlth & Genom, Dundee, Scotland; [Tank, Fatih] Atılım Univ, Dept Econ, Ankara, Turkiyeen_US
dc.description.abstractAnalyzing high-dimensional (HD) data with time-to-event outcomes poses a formidable challenge. The accelerated failure time (AFT) model, an alternative to the Cox proportional hazard model in survival analysis, lacks sufficient R packages for HD time-to-event data under the Bayesian paradigm. To address this gap, we develop the R package afthd. This tool facilitates advanced AFT modeling, offering Bayesian analysis for univariate and multivariable scenarios. This work includes diagnostic plots and an open-source R code for working with HD data, extending the conventional AFT model to the Bayesian framework of log-normal, Weibull, and log-logistic AFT models. The methodology is rigorously validated through simulation techniques, yielding consistent results across parametric AFT models. The application part is also performed on two different real HD liver cancer datasets, which reveals the proposed method's significance by obtaining inferences for survival estimates for the disease. Our developed package afthd is competent in working with HD time-to-event data using the conventional AFT model along with the Bayesian paradigm. Other aspects, like missing values in covariates within HD data and competing risk analysis, are also covered in this article.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1007/s42081-025-00301-5
dc.identifier.issn2520-8756
dc.identifier.issn2520-8764
dc.identifier.scopus2-s2.0-105002638241
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1007/s42081-025-00301-5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10555
dc.identifier.wosWOS:001468247400001
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringernatureen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccelerated Failure Time Modelen_US
dc.subjectWeibullen_US
dc.subjectLog-Linearen_US
dc.subjectLog-Logisticen_US
dc.subjectHigh-Dimensional Dataen_US
dc.subjectSurvival Analysisen_US
dc.titleAfthd: Bayesian Accelerated Failure Time Model for High-Dimensional Time-To Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections