Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method
dc.authorid | Turgut, Ali Emre/0000-0002-9837-1007 | |
dc.authorid | Bellotto, Nicola/0000-0001-7950-9608 | |
dc.authorid | Arvin, Farshad/0000-0001-7950-3193 | |
dc.authorid | Yue, Shigang/0000-0002-1899-6307 | |
dc.authorscopusid | 35118570800 | |
dc.authorscopusid | 24491230100 | |
dc.authorscopusid | 56296622500 | |
dc.authorscopusid | 24438001000 | |
dc.authorscopusid | 23059304100 | |
dc.authorscopusid | 7102296450 | |
dc.authorwosid | Turgut, Ali Emre/ABB-6641-2020 | |
dc.authorwosid | Bellotto, Nicola/ISB-8764-2023 | |
dc.authorwosid | Arvin, Farshad/AAO-5579-2020 | |
dc.contributor.author | Arvin, Farshad | |
dc.contributor.author | Turgut, Ali Emre | |
dc.contributor.author | Bazyari, Farhad | |
dc.contributor.author | Arikan, Kutluk Bilge | |
dc.contributor.author | Bellotto, Nicola | |
dc.contributor.author | Yue, Shigang | |
dc.contributor.other | Department of Mechatronics Engineering | |
dc.date.accessioned | 2024-07-05T14:27:12Z | |
dc.date.available | 2024-07-05T14:27:12Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Arvin, Farshad; Bazyari, Farhad; Bellotto, Nicola; Yue, Shigang] Lincoln Univ, Sch Comp Sci, Computat Intelligence Lab, Lincoln LN6 7TS, England; [Turgut, Ali Emre] Katholieke Univ Leuven, Lab Socioecol & Social Evolut, Leuven, Belgium; [Arikan, Kutluk Bilge] Atilim Univ, Dept Mechatron Engn, Fac Engn, Ankara, Turkey | en_US |
dc.description | Turgut, Ali Emre/0000-0002-9837-1007; Bellotto, Nicola/0000-0001-7950-9608; Arvin, Farshad/0000-0001-7950-3193; Yue, Shigang/0000-0002-1899-6307 | en_US |
dc.description.abstract | Aggregation in swarm robotics is referred to as the gathering of spatially distributed robots into a single aggregate. Aggregation can be classified as cue-based or self-organized. In cue-based aggregation, there is a cue in the environment that points to the aggregation area, whereas in self-organized aggregation no cue is present. In this paper, we proposed a novel fuzzy-based method for cue-based aggregation based on the state-of-the-art BEECLUST algorithm. In particular, we proposed three different methods: naive, that uses a deterministic decision-making mechanism; vector-averaging, using a vectorial summation of all perceived inputs; and fuzzy, that uses a fuzzy logic controller. We used different experiment settings: one-source and two-source environments with static and dynamic conditions to compare all the methods. We observed that the fuzzy method outperformed all the other methods and it is the most robust method against noise. | en_US |
dc.description.sponsorship | EU [269118, 295151, 318907] | en_US |
dc.description.sponsorship | This work was supported by EU FP7-IRSES projects EYE2E (grant number 269118), LIVCODE (grant number 295151), and HAZCEPT (grant number 318907). | en_US |
dc.identifier.citationcount | 48 | |
dc.identifier.doi | 10.1177/1059712314528009 | |
dc.identifier.endpage | 206 | en_US |
dc.identifier.issn | 1059-7123 | |
dc.identifier.issn | 1741-2633 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-84905003539 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 189 | en_US |
dc.identifier.uri | https://doi.org/10.1177/1059712314528009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/234 | |
dc.identifier.volume | 22 | en_US |
dc.identifier.wos | WOS:000342977500003 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Arıkan, Kutluk Bilge | |
dc.language.iso | en | en_US |
dc.publisher | Sage Publications Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 61 | |
dc.subject | Swarm robotics | en_US |
dc.subject | self-organization | en_US |
dc.subject | collective behaviour | en_US |
dc.subject | cue-based aggregation | en_US |
dc.subject | fuzzy logic | en_US |
dc.title | Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 48 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 03706570-0173-42fb-a940-17a9fbbef4b3 | |
relation.isAuthorOfPublication.latestForDiscovery | 03706570-0173-42fb-a940-17a9fbbef4b3 | |
relation.isOrgUnitOfPublication | e2a6d0b1-378e-4532-82b1-d17cabc56744 | |
relation.isOrgUnitOfPublication.latestForDiscovery | e2a6d0b1-378e-4532-82b1-d17cabc56744 |