Liftable Homeomorphisms of Rank Two Finite Abelian Branched Covers
| dc.contributor.author | Atalan, Ferihe | |
| dc.contributor.author | Atalan, Ferihe | |
| dc.contributor.author | Medetogullari, Elif | |
| dc.contributor.author | Ozan, Yildiray | |
| dc.contributor.author | Medetoğulları, Elif | |
| dc.contributor.author | Atalan, Ferihe | |
| dc.contributor.author | Medetoğulları, Elif | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:39:18Z | |
| dc.date.available | 2024-07-05T15:39:18Z | |
| dc.date.issued | 2021 | |
| dc.description | OZAN, YILDIRAY/0000-0003-2373-240X; Atalan, Ferihe/0000-0001-6547-0570 | en_US |
| dc.description.abstract | We investigate branched regular finite abelian A-covers of the 2-sphere, where every homeomorphism of the base (preserving the branch locus) lifts to a homeomorphism of the covering surface. In this study, we prove that if A is a finite abelian p-group of rank k and Sigma -> S-2 is a regular A-covering branched over n points such that every homeomorphism f:S-2 -> S-2 lifts to Sigma, then n = k + 1. We will also give a partial classification of such covers for rank two finite p-groups. In particular, we prove that for a regular branched A-covering pi : Sigma -> S-2, where A = ZprxZpt, 1 <= r <= t , all homeomorphisms f:S-2 -> S-2 lift to those of Sigma if and only if t = r or t = r + 1 and p = 3. | en_US |
| dc.identifier.doi | 10.1007/s00013-020-01501-z | |
| dc.identifier.issn | 0003-889X | |
| dc.identifier.issn | 1420-8938 | |
| dc.identifier.scopus | 2-s2.0-85095991255 | |
| dc.identifier.uri | https://doi.org/10.1007/s00013-020-01501-z | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/3210 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Basel Ag | en_US |
| dc.relation.ispartof | Archiv der Mathematik | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Branched covers | en_US |
| dc.subject | Mapping class group | en_US |
| dc.subject | Automorphisms of groups | en_US |
| dc.title | Liftable Homeomorphisms of Rank Two Finite Abelian Branched Covers | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | OZAN, YILDIRAY/0000-0003-2373-240X | |
| gdc.author.id | Atalan, Ferihe/0000-0001-6547-0570 | |
| gdc.author.institutional | Atalan, Ferihe | |
| gdc.author.institutional | Medetoğulları, Elif | |
| gdc.author.scopusid | 36132841800 | |
| gdc.author.scopusid | 57194266536 | |
| gdc.author.scopusid | 56628072200 | |
| gdc.author.wosid | Ozan, Yildiray/AAZ-6245-2020 | |
| gdc.author.wosid | Atalan, Ferihe/JRY-6739-2023 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Atalan, Ferihe] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Medetogullari, Elif] TED Univ, Dept Math, TR-06429 Ankara, Turkey; [Ozan, Yildiray] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey | en_US |
| gdc.description.endpage | 48 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 37 | en_US |
| gdc.description.volume | 116 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W3098072144 | |
| gdc.identifier.wos | WOS:000589153700001 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 3.4872687E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Automorphisms Of Groups | |
| gdc.oaire.keywords | Branched Covers | |
| gdc.oaire.keywords | Mapping Class Group | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 4.044916E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.789 | |
| gdc.openalex.normalizedpercentile | 0.65 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | 5c836044-bce3-404e-be68-c2298dfab3a2 | |
| relation.isAuthorOfPublication | 6283524c-cee8-40d7-bd8c-e32433839b84 | |
| relation.isAuthorOfPublication | 5c836044-bce3-404e-be68-c2298dfab3a2 | |
| relation.isAuthorOfPublication | 6283524c-cee8-40d7-bd8c-e32433839b84 | |
| relation.isAuthorOfPublication | 5c836044-bce3-404e-be68-c2298dfab3a2 | |
| relation.isAuthorOfPublication | 6283524c-cee8-40d7-bd8c-e32433839b84 | |
| relation.isAuthorOfPublication.latestForDiscovery | 5c836044-bce3-404e-be68-c2298dfab3a2 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |