Effects of Si nanowire on the device properties of n-ZnSe/p-Si heterostructure

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The semiconductor nanowire (NW) technology has raised attention owing to its one-dimensional geometry as a solution for lattice mismatch in the fabricated heterostructures. Although, SiNWs have been investigated for various device technologies, there is no published work on the p-n junction formed by deposition of ZnSe thin film on these NW structures, in which this film layer has significant optical and electrical properties in optoelectronics applications. The aim of this study is determining the device properties of n-ZnSe/SiNW heterojunction and obtaining the enhancement in the device application of the NW structure on Si surface with comparing to planar surface. SiNW was produced by metal assisted etching method as a cost-efficient process, and the ZnSe film was deposited on SiNW and planar Si substrates by thermal evaporation of elemental sources. The optical band gap of the deposited ZnSe film was determined as 2.7eV which is in a good agreement with literature. The ideality factor and series resistance values of the ZnSe/SiNW and ZnSe/Si heterojunctions were calculated as 3.12, 461 , and 4.52, 7.26x103, respectively. As a result of utilizing SiNW structure, a spectacular improvement in terms of the physical parameters related to device properties was achieved.

Description

Çolakoğlu, Tahir/0000-0001-8949-8607; parlak, mehmet/0000-0001-9542-5121; Gullu, Hasan Huseyin/0000-0001-8541-5309; Coskun, Emre/0000-0002-6820-3889

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

7

WoS Q

Q2

Scopus Q

Source

Volume

30

Issue

5

Start Page

4760

End Page

4765

Collections