Unit and idempotent additive maps over countable linear transformations

dc.authorscopusid57571130200
dc.authorscopusid35254311500
dc.authorscopusid18938122100
dc.contributor.authorGumusel, Gunseli
dc.contributor.authorKosan, M. Tamer
dc.contributor.authorZemlicka, Jan
dc.contributor.otherDepartment of Social Sciences for University wide Courses
dc.date.accessioned2024-07-05T15:23:31Z
dc.date.available2024-07-05T15:23:31Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Gumusel, Gunseli] Atilim Univ, Fac Sci & Literatures, Ankara, Turkiye; [Kosan, M. Tamer] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye; [Zemlicka, Jan] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 8, Czech Republicen_US
dc.description.abstractLet V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) .en_US
dc.identifier.citation0
dc.identifier.doi10.15672/hujms.1187608
dc.identifier.endpage313en_US
dc.identifier.issn2651-477X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85193010888
dc.identifier.startpage305en_US
dc.identifier.urihttps://doi.org/10.15672/hujms.1187608
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2328
dc.identifier.volume53en_US
dc.identifier.wosWOS:001225022700001
dc.institutionauthorGümüşel, Günseli
dc.language.isoenen_US
dc.publisherHacettepe Univ, Fac Scien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject. uniten_US
dc.subjectshift operatoren_US
dc.subjectidempotent matrixen_US
dc.subjecttripotent matrixen_US
dc.subjectsemilocal ringen_US
dc.subjectdivision ringen_US
dc.titleUnit and idempotent additive maps over countable linear transformationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isAuthorOfPublication.latestForDiscovery58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isOrgUnitOfPublication41f897ac-6196-4b71-a32a-ed5b1e14cdf2
relation.isOrgUnitOfPublication.latestForDiscovery41f897ac-6196-4b71-a32a-ed5b1e14cdf2

Files

Collections