Unit and Idempotent Additive Maps Over Countable Linear Transformations
dc.authorscopusid | 57571130200 | |
dc.authorscopusid | 35254311500 | |
dc.authorscopusid | 18938122100 | |
dc.contributor.author | Gümüsel, Günselı | |
dc.contributor.author | Kosan, Tamer | |
dc.contributor.author | Zemlicka, Jan | |
dc.contributor.other | Department of Social Sciences for University wide Courses | |
dc.date.accessioned | 2024-07-05T15:23:31Z | |
dc.date.available | 2024-07-05T15:23:31Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atılım Üniversitesi,Gazi Üniversitesi,Yabancı Kurumlar | en_US |
dc.description.abstract | Let V be a countably generated right vector space over a field F and σ ∈ End(VF ) be a shift operator. We show that there exist a unit u and an idempotent e in End(VF ) such that 1−u,σ−u are units in End(VF) and 1−e,σ−e are idempotents in End(VF). We also obtain that if D is a division ring D Z2, Z3 and VD is a D-module, then for every α ∈ End(VD) there exists a unit u ∈ End(VD) such that 1−u,α−u are units in End(VD). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.15672/hujms.1187608 | |
dc.identifier.endpage | 313 | en_US |
dc.identifier.issn | 1303-5010 | |
dc.identifier.issn | 2651-477X | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85193010888 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 305 | en_US |
dc.identifier.trdizinid | 1235506 | |
dc.identifier.uri | https://doi.org/10.15672/hujms.1187608 | |
dc.identifier.uri | https://search.trdizin.gov.tr/en/yayin/detay/1235506/unit-and-idempotent-additive-maps-over-countable-linear-transformations | |
dc.identifier.volume | 53 | en_US |
dc.identifier.wos | WOS:001225022700001 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Gümüşel, Günseli | |
dc.institutionauthor | Gümüşel, Günseli | |
dc.language.iso | en | en_US |
dc.publisher | Hacettepe Univ, Fac Sci | en_US |
dc.relation.ispartof | Hacettepe Journal of Mathematics and Statistics | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Unit | en_US |
dc.subject | Shift Operator | en_US |
dc.subject | Idempotent Matrix | en_US |
dc.subject | Tripotent Matrix | en_US |
dc.subject | Semilocal Ring | en_US |
dc.subject | Division Ring | en_US |
dc.title | Unit and Idempotent Additive Maps Over Countable Linear Transformations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 58f1b251-8fff-4dfa-be25-8b775c5fe3a5 | |
relation.isAuthorOfPublication.latestForDiscovery | 58f1b251-8fff-4dfa-be25-8b775c5fe3a5 | |
relation.isOrgUnitOfPublication | 41f897ac-6196-4b71-a32a-ed5b1e14cdf2 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 41f897ac-6196-4b71-a32a-ed5b1e14cdf2 |