Unit and Idempotent Additive Maps Over Countable Linear Transformations

dc.contributor.author Gümüsel, Günselı
dc.contributor.author Kosan, Tamer
dc.contributor.author Zemlicka, Jan
dc.contributor.other Department of Social Sciences for University wide Courses
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:23:31Z
dc.date.available 2024-07-05T15:23:31Z
dc.date.issued 2024
dc.description.abstract Let V be a countably generated right vector space over a field F and σ ∈ End(VF ) be a shift operator. We show that there exist a unit u and an idempotent e in End(VF ) such that 1−u,σ−u are units in End(VF) and 1−e,σ−e are idempotents in End(VF). We also obtain that if D is a division ring D Z2, Z3 and VD is a D-module, then for every α ∈ End(VD) there exists a unit u ∈ End(VD) such that 1−u,α−u are units in End(VD). en_US
dc.identifier.doi 10.15672/hujms.1187608
dc.identifier.issn 1303-5010
dc.identifier.issn 2651-477X
dc.identifier.scopus 2-s2.0-85193010888
dc.identifier.uri https://doi.org/10.15672/hujms.1187608
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1235506/unit-and-idempotent-additive-maps-over-countable-linear-transformations
dc.language.iso en en_US
dc.publisher Hacettepe Univ, Fac Sci en_US
dc.relation.ispartof Hacettepe Journal of Mathematics and Statistics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Unit en_US
dc.subject Shift Operator en_US
dc.subject Idempotent Matrix en_US
dc.subject Tripotent Matrix en_US
dc.subject Semilocal Ring en_US
dc.subject Division Ring en_US
dc.title Unit and Idempotent Additive Maps Over Countable Linear Transformations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Gümüşel, Günseli
gdc.author.institutional Gümüşel, Günseli
gdc.author.scopusid 57571130200
gdc.author.scopusid 35254311500
gdc.author.scopusid 18938122100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atılım Üniversitesi,Gazi Üniversitesi,Yabancı Kurumlar en_US
gdc.description.endpage 313 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 305 en_US
gdc.description.volume 53 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4361265960
gdc.identifier.trdizinid 1235506
gdc.identifier.wos WOS:001225022700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.583162E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Matematik
gdc.oaire.keywords unit;shift operator;idempotent matrix;tripotent matrix;semilocal ring;division ring
gdc.oaire.keywords Mathematical Sciences
gdc.oaire.popularity 2.5957043E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isAuthorOfPublication.latestForDiscovery 58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isOrgUnitOfPublication 41f897ac-6196-4b71-a32a-ed5b1e14cdf2
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 41f897ac-6196-4b71-a32a-ed5b1e14cdf2

Files