Unit and Idempotent Additive Maps Over Countable Linear Transformations

dc.authorscopusid 57571130200
dc.authorscopusid 35254311500
dc.authorscopusid 18938122100
dc.contributor.author Gumusel, Gunseli
dc.contributor.author Kosan, M. Tamer
dc.contributor.author Zemlicka, Jan
dc.contributor.other Department of Social Sciences for University wide Courses
dc.date.accessioned 2024-07-05T15:23:31Z
dc.date.available 2024-07-05T15:23:31Z
dc.date.issued 2024
dc.department Atılım University en_US
dc.department-temp [Gumusel, Gunseli] Atilim Univ, Fac Sci & Literatures, Ankara, Turkiye; [Kosan, M. Tamer] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye; [Zemlicka, Jan] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 8, Czech Republic en_US
dc.description.abstract Let V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) . en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.15672/hujms.1187608
dc.identifier.endpage 313 en_US
dc.identifier.issn 2651-477X
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85193010888
dc.identifier.startpage 305 en_US
dc.identifier.uri https://doi.org/10.15672/hujms.1187608
dc.identifier.uri https://hdl.handle.net/20.500.14411/2328
dc.identifier.volume 53 en_US
dc.identifier.wos WOS:001225022700001
dc.institutionauthor Gümüşel, Günseli
dc.language.iso en en_US
dc.publisher Hacettepe Univ, Fac Sci en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject . unit en_US
dc.subject shift operator en_US
dc.subject idempotent matrix en_US
dc.subject tripotent matrix en_US
dc.subject semilocal ring en_US
dc.subject division ring en_US
dc.title Unit and Idempotent Additive Maps Over Countable Linear Transformations en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isAuthorOfPublication.latestForDiscovery 58f1b251-8fff-4dfa-be25-8b775c5fe3a5
relation.isOrgUnitOfPublication 41f897ac-6196-4b71-a32a-ed5b1e14cdf2
relation.isOrgUnitOfPublication.latestForDiscovery 41f897ac-6196-4b71-a32a-ed5b1e14cdf2

Files

Collections