Unit and idempotent additive maps over countable linear transformations
dc.authorscopusid | 57571130200 | |
dc.authorscopusid | 35254311500 | |
dc.authorscopusid | 18938122100 | |
dc.contributor.author | Gumusel, Gunseli | |
dc.contributor.author | Kosan, M. Tamer | |
dc.contributor.author | Zemlicka, Jan | |
dc.contributor.other | Department of Social Sciences for University wide Courses | |
dc.date.accessioned | 2024-07-05T15:23:31Z | |
dc.date.available | 2024-07-05T15:23:31Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Gumusel, Gunseli] Atilim Univ, Fac Sci & Literatures, Ankara, Turkiye; [Kosan, M. Tamer] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye; [Zemlicka, Jan] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 8, Czech Republic | en_US |
dc.description.abstract | Let V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) . | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.15672/hujms.1187608 | |
dc.identifier.endpage | 313 | en_US |
dc.identifier.issn | 2651-477X | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85193010888 | |
dc.identifier.startpage | 305 | en_US |
dc.identifier.uri | https://doi.org/10.15672/hujms.1187608 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2328 | |
dc.identifier.volume | 53 | en_US |
dc.identifier.wos | WOS:001225022700001 | |
dc.institutionauthor | Gümüşel, Günseli | |
dc.language.iso | en | en_US |
dc.publisher | Hacettepe Univ, Fac Sci | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | . unit | en_US |
dc.subject | shift operator | en_US |
dc.subject | idempotent matrix | en_US |
dc.subject | tripotent matrix | en_US |
dc.subject | semilocal ring | en_US |
dc.subject | division ring | en_US |
dc.title | Unit and idempotent additive maps over countable linear transformations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 58f1b251-8fff-4dfa-be25-8b775c5fe3a5 | |
relation.isAuthorOfPublication.latestForDiscovery | 58f1b251-8fff-4dfa-be25-8b775c5fe3a5 | |
relation.isOrgUnitOfPublication | 41f897ac-6196-4b71-a32a-ed5b1e14cdf2 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 41f897ac-6196-4b71-a32a-ed5b1e14cdf2 |