Unit and Idempotent Additive Maps Over Countable Linear Transformations
Loading...

Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Hacettepe Univ, Fac Sci
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Let V be a countably generated right vector space over a field F and σ ∈ End(VF ) be a shift operator. We show that there exist a unit u and an idempotent e in End(VF ) such that 1−u,σ−u are units in End(VF) and 1−e,σ−e are idempotents in End(VF). We also obtain that if D is a division ring D Z2, Z3 and VD is a D-module, then for every α ∈ End(VD) there exists a unit u ∈ End(VD) such that 1−u,α−u are units in End(VD).
Description
Keywords
Unit, Shift Operator, Idempotent Matrix, Tripotent Matrix, Semilocal Ring, Division Ring, Matematik, unit;shift operator;idempotent matrix;tripotent matrix;semilocal ring;division ring, Mathematical Sciences
Turkish CoHE Thesis Center URL
Fields of Science
0102 computer and information sciences, 0101 mathematics, 01 natural sciences
Citation
WoS Q
Q2
Scopus Q
Q3

OpenCitations Citation Count
N/A
Source
Hacettepe Journal of Mathematics and Statistics
Volume
53
Issue
2
Start Page
305
End Page
313
PlumX Metrics
Citations
Scopus : 0
Captures
Mendeley Readers : 3
Page Views
7
checked on Feb 08, 2026
Google Scholar™


