Unit and Idempotent Additive Maps Over Countable Linear Transformations

Loading...
Publication Logo

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Hacettepe Univ, Fac Sci

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Let V be a countably generated right vector space over a field F and σ ∈ End(VF ) be a shift operator. We show that there exist a unit u and an idempotent e in End(VF ) such that 1−u,σ−u are units in End(VF) and 1−e,σ−e are idempotents in End(VF). We also obtain that if D is a division ring D Z2, Z3 and VD is a D-module, then for every α ∈ End(VD) there exists a unit u ∈ End(VD) such that 1−u,α−u are units in End(VD).

Description

Keywords

Unit, Shift Operator, Idempotent Matrix, Tripotent Matrix, Semilocal Ring, Division Ring, Matematik, unit;shift operator;idempotent matrix;tripotent matrix;semilocal ring;division ring, Mathematical Sciences

Turkish CoHE Thesis Center URL

Fields of Science

0102 computer and information sciences, 0101 mathematics, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Hacettepe Journal of Mathematics and Statistics

Volume

53

Issue

2

Start Page

305

End Page

313
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 3

Page Views

7

checked on Feb 08, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available