Unit and idempotent additive maps over countable linear transformations
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Hacettepe Univ, Fac Sci
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) .
Description
Keywords
. unit, shift operator, idempotent matrix, tripotent matrix, semilocal ring, division ring
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Scopus Q
Source
Volume
53
Issue
2
Start Page
305
End Page
313