Multi-walled carbon nanotubes decorated by platinum catalyst for high temperature PEM fuel cell

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

In the literature, studies on platinum catalysts deposited on multi-walled carbon nanotube (Pt/MWCNT) have been mostly focused on low temperature fuel cell (LT-PEMFC) applications. In this study, we focus the synthesis and characterization of high temperature fuel cell (HT-PEMFC) performance of Pt/MWCNT in short and long term. The structural properties of the Pt/MWCNT electrocatalyst were analyzed by XRD, TGA, SEM and TEM measurements. The Pt/MWCNTs were also characterized by electrochemical measurements for durability estimation. Laboratory scale MEA with Pt/MWCNT was prepared by ultrasonic coating technique and has been tested in situ in single HT-PEMFC. Performance curves in dry Hydrogen/Air system were obtained that demonstrated performance comparable to commercial catalysts in that HT-PEMFC. The characterizations specified that the electrocatalytic and HT-PEMFC performance of the Pt/MWCNT catalysts are higher power density (0.360 W/cm(2)) than Pt/C (0.310 W/cm(2)) at 160 degrees C. The results obtained show that the synthesized catalysts are suitable for high temperature applications. In addition, the stability studies of MEAs prepared with Pt/MWCNT catalyst were performed by AST tests and compared with Pt/C based MEA. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702

Keywords

Proton exchange membrane fuel cell, High temperature, Multi walled carbon nanotube, Catalyst, Microwave synthesis

Turkish CoHE Thesis Center URL

Citation

47

WoS Q

Q1

Scopus Q

Source

3rd International Hydrogen Technologies Congress (IHTEC) -- MAR 15-18, 2018 -- Alanya Alaaddin Keykubat Univ, TURKEY

Volume

44

Issue

34

Start Page

18951

End Page

18966

Collections