A flow stress model for steel in cold forging process range and the associated method for parameter identification

dc.authoridSimsir, Caner/0009-0006-7871-4232
dc.authoridSimsir, Caner/0000-0001-9520-4695
dc.authorscopusid24342602900
dc.authorscopusid58418005400
dc.authorwosidSimsir, Caner/CAJ-2630-2022
dc.authorwosidSimsir, Caner/U-6962-2017
dc.contributor.authorŞimşir, Caner
dc.contributor.authorDuran, Deniz
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:28:49Z
dc.date.available2024-07-05T15:28:49Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Simsir, Caner; Duran, Deniz] Atilim Univ, Met Forming Ctr Excellence, Kizilcasar Mahallesi, TR-06836 Ankara, Turkey; [Simsir, Caner] Atilim Univ, Dept Mfg Engn, Kizilcasar Mahallesi, TR-06836 Ankara, Turkeyen_US
dc.descriptionSimsir, Caner/0009-0006-7871-4232; Simsir, Caner/0000-0001-9520-4695en_US
dc.description.abstractDetailed thermo-mechanical characterization of DIN 16MnCr5 covering the process range of cold forging applications (0.01 s(-1) 40 s(-1), 25 A degrees C Ta 400 A degrees C) by compression tests revealed flow stress instabilities associated with dynamic strain aging (DSA) which cannot be reproduced by conventional flow stress models. As a remedy, a flow stress model capable of capturing sharp changes in flow stress, strain hardening, and strain rate sensitivity is proposed. Then, a method for parameter identification is presented which can deal with inhomogeneous deformation heating of the specimen at relatively high-strain-rate tests. The presented method involves response surface-based numerical optimization of the flawed compression tests coupled with finite element (FE) simulation. The proposed flow stress model and the extracted parameters are validated in a forward rod extrusion process without using any case-specific determined parameters in FE simulation. A natural agreement is obtained between the experimental and the predicted results in terms of both the force-displacement curve and the part geometry. The authors think that the flow stress instabilities encountered in the cold forging process range may have further consequences in other inverse analysis attempts such as friction coefficient or critical damage parameter determination and that the proper treatment of material data as put forth in this study can improve the predictive capability of process modeling.en_US
dc.identifier.citation7
dc.identifier.doi10.1007/s00170-017-1160-x
dc.identifier.endpage3808en_US
dc.identifier.issn0268-3768
dc.identifier.issn1433-3015
dc.identifier.issue9-12en_US
dc.identifier.scopus2-s2.0-85029813728
dc.identifier.startpage3795en_US
dc.identifier.urihttps://doi.org/10.1007/s00170-017-1160-x
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2845
dc.identifier.volume94en_US
dc.identifier.wosWOS:000425592900061
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartof12th International Conference on Frontiers of Design and Manufacturing (ICFDM) -- AUG 10-12, 2016 -- Natl Nat Sci Fdn China, Shenyang, PEOPLES R CHINAen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFlow stress modelen_US
dc.subjectDynamic strain agingen_US
dc.subjectOptimizationen_US
dc.subjectCold forgingen_US
dc.subjectSteelen_US
dc.titleA flow stress model for steel in cold forging process range and the associated method for parameter identificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication1d264de9-5f32-47ad-9d84-dea8cd91bf4f
relation.isAuthorOfPublication.latestForDiscovery1d264de9-5f32-47ad-9d84-dea8cd91bf4f
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections