Some Simultaneous Generalizations of Well-Known Fixed Point Theorems and Their Applications To Fixed Point Theory
| dc.contributor.author | Du, Wei-Shih | |
| dc.contributor.author | Karapinar, Erdal | |
| dc.contributor.author | He, Zhenhua | |
| dc.date.accessioned | 2024-07-05T15:27:02Z | |
| dc.date.available | 2024-07-05T15:27:02Z | |
| dc.date.issued | 2018 | |
| dc.description | KARAPINAR, ERDAL/0000-0002-6798-3254 | en_US |
| dc.description.abstract | In this paper, we first establish a new fixed point theorem that generalizes and unifies a number of well-known fixed point results, including the Banach contraction principle, Kannan's fixed point theorem, Chatterjea fixed point theorem, Du-Rassias fixed point theorem and many others. The presented results not only unify and generalize the existing results, but also yield several new fixed point theorems, which are different from the well-known results in the literature. | en_US |
| dc.description.sponsorship | Ministry of Science and Technology of the Republic of China [MOST 106-2115-M-017-002] | en_US |
| dc.description.sponsorship | The authors wish to express their hearty thanks to the anonymous referees for their valuable suggestions and comments. The first author is supported by Grant No. MOST 106-2115-M-017-002 of the Ministry of Science and Technology of the Republic of China. | en_US |
| dc.identifier.doi | 10.3390/math6070117 | |
| dc.identifier.issn | 2227-7390 | |
| dc.identifier.scopus | 2-s2.0-85050244780 | |
| dc.identifier.uri | https://doi.org/10.3390/math6070117 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2632 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Banach contraction principle | en_US |
| dc.subject | Kannan's fixed point theorem | en_US |
| dc.subject | Chatterjea's fixed point theorem | en_US |
| dc.subject | Du-Rassias's fixed point theorem | en_US |
| dc.subject | simultaneous generalization | en_US |
| dc.subject | M()-function | en_US |
| dc.title | Some Simultaneous Generalizations of Well-Known Fixed Point Theorems and Their Applications To Fixed Point Theory | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | KARAPINAR, ERDAL/0000-0002-6798-3254 | |
| gdc.author.scopusid | 27169183500 | |
| gdc.author.scopusid | 16678995500 | |
| gdc.author.scopusid | 26436354100 | |
| gdc.author.wosid | KARAPINAR, ERDAL/H-3177-2011 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Du, Wei-Shih] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung 82444, Taiwan; [Karapinar, Erdal] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [He, Zhenhua] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China | en_US |
| gdc.description.issue | 7 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 117 | |
| gdc.description.volume | 6 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2846516035 | |
| gdc.identifier.wos | WOS:000440215100012 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.0739644E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Du–Rassias’s fixed point theorem | |
| gdc.oaire.keywords | Chatterjea’s fixed point theorem | |
| gdc.oaire.keywords | ℳ?(λ)-function | |
| gdc.oaire.keywords | Fixed-point and coincidence theorems (topological aspects) | |
| gdc.oaire.keywords | \(\mathcal{MT} (\lambda)\)-function | |
| gdc.oaire.keywords | Kannan's fixed point theorem | |
| gdc.oaire.keywords | Kannan’s fixed point theorem | |
| gdc.oaire.keywords | simultaneous generalization | |
| gdc.oaire.keywords | ℳ?(<i>λ</i>)-function | |
| gdc.oaire.keywords | Fixed-point theorems | |
| gdc.oaire.keywords | Chatterjea's fixed point theorem | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | Du-Rassias's fixed point theorem | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Banach contraction principle | |
| gdc.oaire.popularity | 3.999076E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.02239716 | |
| gdc.openalex.normalizedpercentile | 0.85 | |
| gdc.opencitations.count | 7 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Karapınar, Erdal | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
