Effect of welding wire and groove angle on mechanical properties of high strength steel welded joints

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

Mechanical properties of high strength steel welded joints strictly depend on the welding process, the filler material composition and the welding geometry. This study investigates the effects of using cored and solid welding wires and implementing various groove angles on the mechanical performance of weld joints which were fabricated employing the gas metal arc welding process. It was found that weld joints of low alloy, high strength steels using low alloy steel cored welding wires exhibited higher tensile strength than that of low alloy steel solid wire and chromium-nickel steel bare welding wire when the method of gas metal arc welding is employed. The effect of groove angle on the strength and toughness of V-groove and double V-groove butt-joints was investigated. V-groove joints, with higher tensile strength than double V-groove joints in the whole range of groove angles, were superior in toughness for small groove angles, but impact toughness values of both joints were comparable for large angles. The effect of heat input and cooling rate on the weld microstructure and weld strength was also investigated by performing thermal analysis employing the commercial software ANSYS. It was concluded that cooling rate and solidification growth rate determined the microstructure of the weld zone which had great consequences in regard to mechanical properties.

Description

Keywords

High strength steel, weld strength, impact toughness, welding wire, groove angle, materials testing, microstructure, thermal analysis

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q4

Scopus Q

Source

Volume

48

Issue

9

Start Page

912

End Page

921

Collections