The Functional-Analytic Properties of the Limit <i>q</I>-bernstein Operator

dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:11:22Z
dc.date.available 2024-07-05T15:11:22Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract The limit q-Bernstein operator B-q, 0 < q < 1, emerges naturally as a modification of the Szasz-Mirakyan operator related to the Euler distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. Lately, the limit q-Bernstein operator has been widely under scrutiny, and it has been shown that B-q is a positive shape-preserving linear operator on C[0, 1] with parallel to B-q parallel to = 1. Its approximation properties, probabilistic interpretation, eigenstructure, and impact on the smoothness of a function have been examined. In this paper, the functional-analytic properties of B-q are studied. Our main result states that there exists an infinite-dimensional subspace M of C[0, 1] such that the restriction B-q vertical bar(M) is an isomorphic embedding. Also we show that each such subspace M contains an isomorphic copy of the Banach space c(0). en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1155/2012/280314
dc.identifier.issn 2090-8997
dc.identifier.issn 0972-6802
dc.identifier.scopus 2-s2.0-84870203112
dc.identifier.uri https://doi.org/10.1155/2012/280314
dc.identifier.uri https://hdl.handle.net/20.500.14411/1439
dc.identifier.wos WOS:000311209400001
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject [No Keyword Available] en_US
dc.title The Functional-Analytic Properties of the Limit <i>q</I>-bernstein Operator en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections