The Functional-Analytic Properties of the Limit <i>q</I>-bernstein Operator
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.date.accessioned | 2024-07-05T15:11:22Z | |
| dc.date.available | 2024-07-05T15:11:22Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | The limit q-Bernstein operator B-q, 0 < q < 1, emerges naturally as a modification of the Szasz-Mirakyan operator related to the Euler distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. Lately, the limit q-Bernstein operator has been widely under scrutiny, and it has been shown that B-q is a positive shape-preserving linear operator on C[0, 1] with parallel to B-q parallel to = 1. Its approximation properties, probabilistic interpretation, eigenstructure, and impact on the smoothness of a function have been examined. In this paper, the functional-analytic properties of B-q are studied. Our main result states that there exists an infinite-dimensional subspace M of C[0, 1] such that the restriction B-q vertical bar(M) is an isomorphic embedding. Also we show that each such subspace M contains an isomorphic copy of the Banach space c(0). | en_US |
| dc.identifier.doi | 10.1155/2012/280314 | |
| dc.identifier.issn | 2090-8997 | |
| dc.identifier.issn | 0972-6802 | |
| dc.identifier.issn | 1758-4965 | |
| dc.identifier.scopus | 2-s2.0-84870203112 | |
| dc.identifier.uri | https://doi.org/10.1155/2012/280314 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1439 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Journal of Function Spaces and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | The Functional-Analytic Properties of the Limit <i>q</I>-bernstein Operator | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 8 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2012 | |
| gdc.identifier.openalex | W2014677899 | |
| gdc.identifier.wos | WOS:000311209400001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.5796905E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Banach spaces of continuous, differentiable or analytic functions | |
| gdc.oaire.keywords | \(q\)-Bernstein operator | |
| gdc.oaire.keywords | isomorphic embeddings | |
| gdc.oaire.popularity | 5.530208E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.31763389 | |
| gdc.openalex.normalizedpercentile | 0.6 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Ostrovska, Sofiya | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
